找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復(fù)制鏈接]
樓主: necrosis
31#
發(fā)表于 2025-3-27 00:53:10 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:52 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:21 | 只看該作者
Derivatives of L-Series at s = 0,ned, especially for certain types of characters [6; II, III, IV]. It is appropriate to present a paper on this subject here since it was at the Tata Institute that the complex quadratic case was treated in the lectures of Siegel [4] and later work of Ramachandra [3]. It has become clear in recent ye
34#
發(fā)表于 2025-3-27 11:04:05 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:14 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:23 | 只看該作者
,War and Controversy: 1940–1945,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
37#
發(fā)表于 2025-3-28 00:16:44 | 只看該作者
38#
發(fā)表于 2025-3-28 05:11:53 | 只看該作者
Sabine Bollig,Sabrina G?bel,Angelika Sichmas of Eisenstein series, and L. is the continuous part of the spectrum, given by integrals of Eisenstein series. If . is a function of compact support or of sufficiently rapid decay on G, then convolution with . defines an endomorphism T. of L.(.G), and the kernel function ..
39#
發(fā)表于 2025-3-28 08:10:24 | 只看該作者
A Remark on Zeta Functions of Algebraic Number Fields,essarily totally real) algebraic number field. At the time of the Bombay Colloquium (1979), H. M. Stark orally communicated to the author that he has obtained such a result for non-real cubic fields. His oral communication was an initial impetus to the present work. The author wishes to express his gratitude to Stark.
40#
發(fā)表于 2025-3-28 11:05:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
偏关县| 南江县| 汉阴县| 确山县| 弥勒县| 汾阳市| 新沂市| 保康县| 平舆县| 东宁县| 长海县| 阿克陶县| 文水县| 台中县| 呼图壁县| 庄河市| 营山县| 浠水县| 安宁市| 神池县| 奉节县| 乐亭县| 天门市| 梁平县| 山丹县| 抚顺市| 呈贡县| 清原| 南开区| 筠连县| 富源县| 渭源县| 墨竹工卡县| 科技| 额尔古纳市| 邵武市| 桦川县| 顺义区| 三亚市| 兴国县| 天镇县|