找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Mathematical Intelligence; Cognitive, (Meta)mat Danny A. J. Gómez Ramírez Book 2020 Springer Nature Switzerland AG 2020 foundati

[復(fù)制鏈接]
樓主: Helmet
11#
發(fā)表于 2025-3-23 09:45:16 | 只看該作者
12#
發(fā)表于 2025-3-23 16:41:46 | 只看該作者
13#
發(fā)表于 2025-3-23 20:16:18 | 只看該作者
Prologue: No Silk-Blouse Social Worker,ptual “bricks” are elementary in nature and essentially involve simple constructions done using the standard numerical systems (e.g., the natural, integer, and real numbers). The most sophisticated notion that is generated (only by space constrains in the presentation) is the one of (mathematical) schemes in modern algebraic geometry.
14#
發(fā)表于 2025-3-24 01:09:27 | 只看該作者
Some Basic Technical (Meta-)Mathematical Preliminaries for Cognitive Metamathematics,ely many variables, field, field extension, group of automorphisms of a field (extension), (base for a) topological space, (ideal associated to a) algebraic set, ring of coordinates of an algebraic set, pre-sheaf and sheaf with values on the category of sets.
15#
發(fā)表于 2025-3-24 04:58:27 | 只看該作者
Towards the (Cognitive) Reality of Mathematics and the Mathematics of (Cognitive) Reality structurally delimits the accuracy of any predictive model, as we know them today in modern physics. In this way an unpredictability principle of natural human emerges. Finally, we explore, by means of a couple of thought experiments, under which conditions and hypothesis we could be able to “produce” explicit mathematical objects.
16#
發(fā)表于 2025-3-24 09:01:22 | 只看該作者
17#
發(fā)表于 2025-3-24 11:25:25 | 只看該作者
Meta-Modeling of Classic and Modern Mathematical Proofs and Conceptsptual “bricks” are elementary in nature and essentially involve simple constructions done using the standard numerical systems (e.g., the natural, integer, and real numbers). The most sophisticated notion that is generated (only by space constrains in the presentation) is the one of (mathematical) schemes in modern algebraic geometry.
18#
發(fā)表于 2025-3-24 17:30:12 | 只看該作者
Conclusion: A Continuing Dilemma,cal proof are analyzed in detail. Finally, basic principles of the local nature of the (conscious) mind are presented where mathematics is considered, to some extent, as an explicit (cognitive) product of it.
19#
發(fā)表于 2025-3-24 21:53:01 | 只看該作者
https://doi.org/10.1007/978-1-349-19114-7 former notion(s) is described for predicate logic. Finally, it is shown through concrete examples how these new notions can help to naturally meta-model the way in which our mind solves formal proofs starting with elementary, but not entirely trivial, theorems in a classic Hilbert’s style (propositional) calculus.
20#
發(fā)表于 2025-3-25 01:36:58 | 只看該作者
Materialist Feminism and Theatre,eral formalizations of this ability together with its connection with classic notions like primitive positive definability and Diophantineness. Finally, we describe how conceptual substratum can illuminate and enhance the cognitive coherence of (classic) deductive systems like the sequent calculus.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广灵县| 徐水县| 工布江达县| 辉南县| 广宗县| 五原县| 前郭尔| 泾阳县| 丰都县| 望江县| 都兰县| 青州市| 贵德县| 东至县| 贵阳市| 高碑店市| 尼木县| 襄垣县| 遂平县| 长海县| 城口县| 寻甸| 七台河市| 琼结县| 闻喜县| 开封县| 西安市| 商南县| 上饶县| 浦县| 南江县| 临夏市| 建昌县| 沂源县| 茶陵县| 比如县| 德江县| 温宿县| 奇台县| 房山区| 昭苏县|