找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Mathematical Intelligence; Cognitive, (Meta)mat Danny A. J. Gómez Ramírez Book 2020 Springer Nature Switzerland AG 2020 foundati

[復(fù)制鏈接]
樓主: Helmet
11#
發(fā)表于 2025-3-23 09:45:16 | 只看該作者
12#
發(fā)表于 2025-3-23 16:41:46 | 只看該作者
13#
發(fā)表于 2025-3-23 20:16:18 | 只看該作者
Prologue: No Silk-Blouse Social Worker,ptual “bricks” are elementary in nature and essentially involve simple constructions done using the standard numerical systems (e.g., the natural, integer, and real numbers). The most sophisticated notion that is generated (only by space constrains in the presentation) is the one of (mathematical) schemes in modern algebraic geometry.
14#
發(fā)表于 2025-3-24 01:09:27 | 只看該作者
Some Basic Technical (Meta-)Mathematical Preliminaries for Cognitive Metamathematics,ely many variables, field, field extension, group of automorphisms of a field (extension), (base for a) topological space, (ideal associated to a) algebraic set, ring of coordinates of an algebraic set, pre-sheaf and sheaf with values on the category of sets.
15#
發(fā)表于 2025-3-24 04:58:27 | 只看該作者
Towards the (Cognitive) Reality of Mathematics and the Mathematics of (Cognitive) Reality structurally delimits the accuracy of any predictive model, as we know them today in modern physics. In this way an unpredictability principle of natural human emerges. Finally, we explore, by means of a couple of thought experiments, under which conditions and hypothesis we could be able to “produce” explicit mathematical objects.
16#
發(fā)表于 2025-3-24 09:01:22 | 只看該作者
17#
發(fā)表于 2025-3-24 11:25:25 | 只看該作者
Meta-Modeling of Classic and Modern Mathematical Proofs and Conceptsptual “bricks” are elementary in nature and essentially involve simple constructions done using the standard numerical systems (e.g., the natural, integer, and real numbers). The most sophisticated notion that is generated (only by space constrains in the presentation) is the one of (mathematical) schemes in modern algebraic geometry.
18#
發(fā)表于 2025-3-24 17:30:12 | 只看該作者
Conclusion: A Continuing Dilemma,cal proof are analyzed in detail. Finally, basic principles of the local nature of the (conscious) mind are presented where mathematics is considered, to some extent, as an explicit (cognitive) product of it.
19#
發(fā)表于 2025-3-24 21:53:01 | 只看該作者
https://doi.org/10.1007/978-1-349-19114-7 former notion(s) is described for predicate logic. Finally, it is shown through concrete examples how these new notions can help to naturally meta-model the way in which our mind solves formal proofs starting with elementary, but not entirely trivial, theorems in a classic Hilbert’s style (propositional) calculus.
20#
發(fā)表于 2025-3-25 01:36:58 | 只看該作者
Materialist Feminism and Theatre,eral formalizations of this ability together with its connection with classic notions like primitive positive definability and Diophantineness. Finally, we describe how conceptual substratum can illuminate and enhance the cognitive coherence of (classic) deductive systems like the sequent calculus.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹棱县| 五常市| 缙云县| 方城县| 抚松县| 通榆县| 临高县| 阳朔县| 岳普湖县| 英山县| 临夏市| 武安市| 新竹县| 锡林郭勒盟| 同心县| 外汇| 红安县| 桑植县| 托克托县| 娄烦县| 仁寿县| 丹东市| 北安市| 芒康县| 肥城市| 若羌县| 威信县| 元阳县| 侯马市| 萨迦县| 建瓯市| 彰化县| 苍梧县| 舞钢市| 平湖市| 额济纳旗| 图木舒克市| 将乐县| 教育| 大悟县| 通山县|