找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Mathematical Intelligence; Cognitive, (Meta)mat Danny A. J. Gómez Ramírez Book 2020 Springer Nature Switzerland AG 2020 foundati

[復(fù)制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 05:49:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:43:51 | 只看該作者
https://doi.org/10.1007/978-94-007-2831-8 A brief description of some of the most outstanding thematic gaps in the literature regading artificial conceptual generation is shown together with the way in which they will be filled within the AMI program. Finally, minimal ethical considerations for the development of this program are established.
23#
發(fā)表于 2025-3-25 14:04:56 | 只看該作者
Global Introduction to the Artificial Mathematical Intelligence General Program, A brief description of some of the most outstanding thematic gaps in the literature regading artificial conceptual generation is shown together with the way in which they will be filled within the AMI program. Finally, minimal ethical considerations for the development of this program are established.
24#
發(fā)表于 2025-3-25 17:06:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:26 | 只看該作者
The Most Outstanding (Future) Challenges Towards Global AMI and Its Plausible Extensionsta is also required in different formal (mathematical) areas. The ‘humanizing’ effects of a near fulfillment of artificial mathematical intelligence are described. Finally, plausible extensions of the artificial mathematical intelligence’s vision are shown to related scientific disciplines like physics, chemistry, biology, economics, and finances.
26#
發(fā)表于 2025-3-26 00:53:08 | 只看該作者
General Considerations for the New Cognitive Foundations’ Programcal proof are analyzed in detail. Finally, basic principles of the local nature of the (conscious) mind are presented where mathematics is considered, to some extent, as an explicit (cognitive) product of it.
27#
發(fā)表于 2025-3-26 06:47:01 | 只看該作者
Formal Analogical Reasoning in Concrete Mathematical Research former notion(s) is described for predicate logic. Finally, it is shown through concrete examples how these new notions can help to naturally meta-model the way in which our mind solves formal proofs starting with elementary, but not entirely trivial, theorems in a classic Hilbert’s style (propositional) calculus.
28#
發(fā)表于 2025-3-26 09:11:49 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:02 | 只看該作者
30#
發(fā)表于 2025-3-26 19:18:32 | 只看該作者
https://doi.org/10.1007/978-94-007-2831-8gram (Cognitive Metamathematics). Specifically, we briefly revise the notions of propositional and predicative logic, the most outstanding logical frameworks for modern mathematics (e.g., ZFC and NBG set theory, Peano arithmetic), and the notion of category and some of its derived notions. Moreover,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 闸北区| 渭南市| 青岛市| 琼结县| 天祝| 迁西县| 翁牛特旗| 澄江县| 新安县| 鄂托克旗| 漳州市| 城市| 平阴县| 重庆市| 同江市| 扶沟县| 祥云县| 保定市| 马公市| 交口县| 定南县| 济南市| 建瓯市| 梅河口市| 黎城县| 横峰县| 龙江县| 阿瓦提县| 迭部县| 广南县| 涪陵区| 乌拉特前旗| 绍兴市| 中阳县| 浦县| 图们市| 黄山市| 阿勒泰市| 岳池县| 德清县|