找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Mathematical Intelligence; Cognitive, (Meta)mat Danny A. J. Gómez Ramírez Book 2020 Springer Nature Switzerland AG 2020 foundati

[復制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 05:49:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:43:51 | 只看該作者
https://doi.org/10.1007/978-94-007-2831-8 A brief description of some of the most outstanding thematic gaps in the literature regading artificial conceptual generation is shown together with the way in which they will be filled within the AMI program. Finally, minimal ethical considerations for the development of this program are established.
23#
發(fā)表于 2025-3-25 14:04:56 | 只看該作者
Global Introduction to the Artificial Mathematical Intelligence General Program, A brief description of some of the most outstanding thematic gaps in the literature regading artificial conceptual generation is shown together with the way in which they will be filled within the AMI program. Finally, minimal ethical considerations for the development of this program are established.
24#
發(fā)表于 2025-3-25 17:06:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:26 | 只看該作者
The Most Outstanding (Future) Challenges Towards Global AMI and Its Plausible Extensionsta is also required in different formal (mathematical) areas. The ‘humanizing’ effects of a near fulfillment of artificial mathematical intelligence are described. Finally, plausible extensions of the artificial mathematical intelligence’s vision are shown to related scientific disciplines like physics, chemistry, biology, economics, and finances.
26#
發(fā)表于 2025-3-26 00:53:08 | 只看該作者
General Considerations for the New Cognitive Foundations’ Programcal proof are analyzed in detail. Finally, basic principles of the local nature of the (conscious) mind are presented where mathematics is considered, to some extent, as an explicit (cognitive) product of it.
27#
發(fā)表于 2025-3-26 06:47:01 | 只看該作者
Formal Analogical Reasoning in Concrete Mathematical Research former notion(s) is described for predicate logic. Finally, it is shown through concrete examples how these new notions can help to naturally meta-model the way in which our mind solves formal proofs starting with elementary, but not entirely trivial, theorems in a classic Hilbert’s style (propositional) calculus.
28#
發(fā)表于 2025-3-26 09:11:49 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:02 | 只看該作者
30#
發(fā)表于 2025-3-26 19:18:32 | 只看該作者
https://doi.org/10.1007/978-94-007-2831-8gram (Cognitive Metamathematics). Specifically, we briefly revise the notions of propositional and predicative logic, the most outstanding logical frameworks for modern mathematics (e.g., ZFC and NBG set theory, Peano arithmetic), and the notion of category and some of its derived notions. Moreover,
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 22:49
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
建水县| 苗栗县| 潞城市| 始兴县| 青川县| 乐陵市| 海城市| 手游| 资源县| 双江| 卫辉市| 温泉县| 泗水县| 社会| 渑池县| 苏尼特左旗| 繁峙县| 涟源市| 固阳县| 綦江县| 朔州市| 湖南省| 旅游| 十堰市| 察隅县| 乌拉特中旗| 凉城县| 天峨县| 江城| 开化县| 波密县| 临潭县| 绥芬河市| 将乐县| 珠海市| 牡丹江市| 德化县| 钟山县| 昌黎县| 乡宁县| 平顺县|