找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetical Functions; K. Chandrasekharan Book 1970 Springer-Verlag Berlin · Heidelberg 1970 Arithmetic.Arithmetische Funktion.Prime.func

[復制鏈接]
查看: 17683|回復: 42
樓主
發(fā)表于 2025-3-21 18:18:38 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Arithmetical Functions
影響因子2023K. Chandrasekharan
視頻videohttp://file.papertrans.cn/162/161627/161627.mp4
學科分類Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Arithmetical Functions;  K. Chandrasekharan Book 1970 Springer-Verlag Berlin · Heidelberg 1970 Arithmetic.Arithmetische Funktion.Prime.func
影響因子The plan of this book had its inception in a course of lectures on arithmetical functions given by me in the summer of 1964 at the Forschungsinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analysis and number theory. The arithmetical functions considered here are those associated with the distribution of prime numbers, as well as the partition function and the divisor function. Some of the problems posed by their asymptotic behaviour form the theme. They afford a glimpse of the variety of analytical methods used in the theory, and of the variety of problems that await solution. I owe a debt of gratitude to Professor Carl Ludwig Siegel, who has read the book in manuscript and given me the benefit of his criticism. I have improved the text in several places in response to his comments. I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the man
Pindex Book 1970
The information of publication is updating

書目名稱Arithmetical Functions影響因子(影響力)




書目名稱Arithmetical Functions影響因子(影響力)學科排名




書目名稱Arithmetical Functions網(wǎng)絡公開度




書目名稱Arithmetical Functions網(wǎng)絡公開度學科排名




書目名稱Arithmetical Functions被引頻次




書目名稱Arithmetical Functions被引頻次學科排名




書目名稱Arithmetical Functions年度引用




書目名稱Arithmetical Functions年度引用學科排名




書目名稱Arithmetical Functions讀者反饋




書目名稱Arithmetical Functions讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:27:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:05:06 | 只看該作者
Persistence and the Data Portal,ry of functions of a complex variable. We shall prove Selberg’s formula in this chapter, and indicate some of its consequences. We shall also prove an inequality due to E. Wirsing, which, when combined with a variant of Selberg’s formula, gives a proof of the prime number theorem.
地板
發(fā)表于 2025-3-22 08:35:15 | 只看該作者
Expert VB 2008 Business Objects powerful refinement of Weyl’s method was effected by I. M. Vinogradov, who applied it to the solution of a variety of problems in number theory. We shall describe the essentials ofthat method in this chapter, and use it to deduce Chudakov’s refinement of Littlewood’s theorem, to the effect that there exists a constant .>0, such that . t≥t
5#
發(fā)表于 2025-3-22 12:44:08 | 只看該作者
6#
發(fā)表于 2025-3-22 13:14:56 | 只看該作者
,Vinogradov’s method, powerful refinement of Weyl’s method was effected by I. M. Vinogradov, who applied it to the solution of a variety of problems in number theory. We shall describe the essentials ofthat method in this chapter, and use it to deduce Chudakov’s refinement of Littlewood’s theorem, to the effect that there exists a constant .>0, such that . t≥t
7#
發(fā)表于 2025-3-22 17:45:12 | 只看該作者
Theorems of Hardy-Ramanujan and of Rademacher on the partition function,
8#
發(fā)表于 2025-3-22 23:20:09 | 只看該作者
Book 1970d the book in manuscript and given me the benefit of his criticism. I have improved the text in several places in response to his comments. I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the man
9#
發(fā)表于 2025-3-23 03:00:48 | 只看該作者
0072-7830 I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the man978-3-642-50028-2978-3-642-50026-8Series ISSN 0072-7830 Series E-ISSN 2196-9701
10#
發(fā)表于 2025-3-23 08:08:32 | 只看該作者
,The prime number theorem and Selberg’s method,ed by Atle Selberg has made a proof of (1) possible without the use of the properties of the zeta-function of Riemann, and without the use of the theory of functions of a complex variable. We shall prove Selberg’s formula in this chapter, and indicate some of its consequences. We shall also prove an
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绍兴县| 景德镇市| 洛扎县| 高雄县| 丁青县| 大兴区| 武夷山市| 六枝特区| 大宁县| 苏尼特右旗| 蒙山县| 文安县| 黄浦区| 芮城县| 隆尧县| 汾西县| 姚安县| 小金县| 三亚市| 建湖县| 措美县| 仪征市| 苍溪县| 泗水县| 镇坪县| 宁国市| 淳化县| 富蕴县| 铜山县| 忻城县| 台北县| 赣榆县| 商丘市| 花莲市| 扶余县| 永平县| 金塔县| 永和县| 晋城| 明溪县| 宣城市|