找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetical Functions; K. Chandrasekharan Book 1970 Springer-Verlag Berlin · Heidelberg 1970 Arithmetic.Arithmetische Funktion.Prime.func

[復制鏈接]
樓主: Gullet
11#
發(fā)表于 2025-3-23 12:41:48 | 只看該作者
12#
發(fā)表于 2025-3-23 17:50:16 | 只看該作者
,Vinogradov’s method,’s theorem was used, in turn, to obtain the following estimate of the error term in the prime number theorem: .,for a positive, absolute constant .. A powerful refinement of Weyl’s method was effected by I. M. Vinogradov, who applied it to the solution of a variety of problems in number theory. We s
13#
發(fā)表于 2025-3-23 21:56:36 | 只看該作者
14#
發(fā)表于 2025-3-23 22:21:23 | 只看該作者
15#
發(fā)表于 2025-3-24 03:09:26 | 只看該作者
Persistence and the Data Portal,If . is a complex number, with ., where . and . are real, and i.= - 1, the zeta-function of Riemann ζ is defined by the relation
16#
發(fā)表于 2025-3-24 08:32:49 | 只看該作者
Object-Oriented Application Design,The prime number theorem implies that . ~ .log., as .→∞, where . denotes the . prime. A related problem is to determine the size of the difference . - .. The purpose of this chapter is to prove a theorem of Ingham’s which implies, in particular, that . for every ε>0.
17#
發(fā)表于 2025-3-24 13:01:41 | 只看該作者
Windows Presentation Foundation UI,A character of a finite abelian group . is a complex-valued function, not identically zero, defined on the group, such that if ., then .(.) = χ(.).(.) where . is the group-composite, of . and .. If . denotes the unit element of ., and . the group inverse of ., we assume as known the following properties of characters:
18#
發(fā)表于 2025-3-24 18:46:26 | 只看該作者
Object-Oriented Application Design,Let .(.) denote the number of positive divisors of the positive integer . Let . where . is Euler’s constant. It is known, after Dirichlet, that
19#
發(fā)表于 2025-3-24 22:17:40 | 只看該作者
The zeta-function of Riemann,If . is a complex number, with ., where . and . are real, and i.= - 1, the zeta-function of Riemann ζ is defined by the relation
20#
發(fā)表于 2025-3-25 02:16:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丽水市| 日土县| 喀什市| 阜新市| 新竹市| 拉孜县| 额尔古纳市| 南澳县| 留坝县| 霍邱县| 阿瓦提县| 阳泉市| 固安县| 保德县| 班戈县| 新龙县| 沂水县| 吉林市| 波密县| 宿迁市| 阜城县| 上思县| 定陶县| 卢龙县| 江安县| 涟水县| 洛南县| 寿宁县| 布尔津县| 阿拉善左旗| 道孚县| 玉树县| 徐州市| 武胜县| 安多县| 砚山县| 成安县| 平安县| 保定市| 大城县| 徐水县|