找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetical Functions; K. Chandrasekharan Book 1970 Springer-Verlag Berlin · Heidelberg 1970 Arithmetic.Arithmetische Funktion.Prime.func

[復制鏈接]
樓主: Gullet
11#
發(fā)表于 2025-3-23 12:41:48 | 只看該作者
12#
發(fā)表于 2025-3-23 17:50:16 | 只看該作者
,Vinogradov’s method,’s theorem was used, in turn, to obtain the following estimate of the error term in the prime number theorem: .,for a positive, absolute constant .. A powerful refinement of Weyl’s method was effected by I. M. Vinogradov, who applied it to the solution of a variety of problems in number theory. We s
13#
發(fā)表于 2025-3-23 21:56:36 | 只看該作者
14#
發(fā)表于 2025-3-23 22:21:23 | 只看該作者
15#
發(fā)表于 2025-3-24 03:09:26 | 只看該作者
Persistence and the Data Portal,If . is a complex number, with ., where . and . are real, and i.= - 1, the zeta-function of Riemann ζ is defined by the relation
16#
發(fā)表于 2025-3-24 08:32:49 | 只看該作者
Object-Oriented Application Design,The prime number theorem implies that . ~ .log., as .→∞, where . denotes the . prime. A related problem is to determine the size of the difference . - .. The purpose of this chapter is to prove a theorem of Ingham’s which implies, in particular, that . for every ε>0.
17#
發(fā)表于 2025-3-24 13:01:41 | 只看該作者
Windows Presentation Foundation UI,A character of a finite abelian group . is a complex-valued function, not identically zero, defined on the group, such that if ., then .(.) = χ(.).(.) where . is the group-composite, of . and .. If . denotes the unit element of ., and . the group inverse of ., we assume as known the following properties of characters:
18#
發(fā)表于 2025-3-24 18:46:26 | 只看該作者
Object-Oriented Application Design,Let .(.) denote the number of positive divisors of the positive integer . Let . where . is Euler’s constant. It is known, after Dirichlet, that
19#
發(fā)表于 2025-3-24 22:17:40 | 只看該作者
The zeta-function of Riemann,If . is a complex number, with ., where . and . are real, and i.= - 1, the zeta-function of Riemann ζ is defined by the relation
20#
發(fā)表于 2025-3-25 02:16:20 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 05:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云林县| 屏东市| 萨嘎县| 嘉鱼县| 民丰县| 巨野县| 北碚区| 海门市| 祥云县| 綦江县| 哈尔滨市| 静安区| 庐江县| 枝江市| 如东县| 昆山市| 怀化市| 蒙自县| 财经| 贵州省| 石嘴山市| 农安县| 永德县| 吴忠市| 西和县| 白朗县| 鹤山市| 沾化县| 永修县| 赣州市| 浦江县| 乌拉特中旗| 正镶白旗| 盘山县| 宜君县| 西林县| 颍上县| 苗栗市| 安龙县| 莱州市| 鄯善县|