找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 6th International Wo Sylvain Duquesne,Svetla Petkova-Nikova Conference proceedings 2016 Springer International

[復(fù)制鏈接]
樓主: mobility
21#
發(fā)表于 2025-3-25 06:00:59 | 只看該作者
22#
發(fā)表于 2025-3-25 10:11:10 | 只看該作者
Sylvain Duquesne,Svetla Petkova-NikovaIncludes supplementary material:
23#
發(fā)表于 2025-3-25 14:40:08 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/161613.jpg
24#
發(fā)表于 2025-3-25 18:24:21 | 只看該作者
25#
發(fā)表于 2025-3-25 20:45:05 | 只看該作者
Statement and PreparedStatement,cently showed that the Kachisa-Schafer and Scott family of elliptic curves with embedding degree 16 denoted KSS16 at the 192-bit security level is suitable for such protocols comparatively to the Baretto-Lynn and Scott family of elliptic curves of embedding degree 12 (BLS12). In this work, we provid
26#
發(fā)表于 2025-3-26 02:17:55 | 只看該作者
Connection Pooling and Caching,tions with small coefficients (e.g. .) of the orbit elements of a point with respect to a given endomorphism of the curve. We investigate the linear complexity and the distribution of these sequences. The result on the linear complexity answers a question of Igor Shparlinski.
27#
發(fā)表于 2025-3-26 06:57:52 | 只看該作者
Using Oracle Collections and References,-periodic binary sequence . with . whenever . is the sum of three integer squares. We show that it has a large .th linear complexity, which is necessary but not sufficient for unpredictability. However, it also has a very small expansion complexity and thus is rather predictable..Next we prove that
28#
發(fā)表于 2025-3-26 10:28:19 | 只看該作者
29#
發(fā)表于 2025-3-26 14:51:00 | 只看該作者
https://doi.org/10.1007/978-1-4302-2669-7tivity of the binary operation for the composed product is not necessary. We then investigate binary operations defined by polynomial functions, and give a sufficient condition in terms of degrees for the requirement in the Brawley-Carlitz theorem.
30#
發(fā)表于 2025-3-26 19:22:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴桥县| 藁城市| 吉林市| 法库县| 万山特区| 安图县| 盘锦市| 禹城市| 汉沽区| 萍乡市| 阳山县| 历史| 安达市| 临澧县| 即墨市| 东兴市| 木兰县| 龙海市| 遂川县| 静海县| 白玉县| 永安市| 石景山区| 尖扎县| 德保县| 富平县| 达尔| 盐津县| 白城市| 鲜城| 怀仁县| 渭南市| 土默特左旗| 凌海市| 柘城县| 三穗县| 昌宁县| 墨竹工卡县| 泰安市| 金秀| 海宁市|