找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 6th International Wo Sylvain Duquesne,Svetla Petkova-Nikova Conference proceedings 2016 Springer International

[復(fù)制鏈接]
樓主: mobility
31#
發(fā)表于 2025-3-27 00:59:09 | 只看該作者
32#
發(fā)表于 2025-3-27 04:19:51 | 只看該作者
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
33#
發(fā)表于 2025-3-27 08:57:34 | 只看該作者
Advanced Execution Plan Conceptsolean functions to that of Gauss sums. In the case of extensions of degree four times an odd number, an explicit formula involving a Kloosterman sum is conjectured, proved with further restrictions, and supported by extensive experimental data in the general case. In particular, the validity of this
34#
發(fā)表于 2025-3-27 10:39:31 | 只看該作者
35#
發(fā)表于 2025-3-27 13:53:33 | 只看該作者
Arithmetic of Finite Fields978-3-319-55227-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 20:47:31 | 只看該作者
37#
發(fā)表于 2025-3-28 00:07:13 | 只看該作者
https://doi.org/10.1007/978-1-4302-2669-7tivity of the binary operation for the composed product is not necessary. We then investigate binary operations defined by polynomial functions, and give a sufficient condition in terms of degrees for the requirement in the Brawley-Carlitz theorem.
38#
發(fā)表于 2025-3-28 04:17:48 | 只看該作者
39#
發(fā)表于 2025-3-28 06:52:26 | 只看該作者
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
40#
發(fā)表于 2025-3-28 11:11:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏山县| 隆化县| 万州区| 建水县| 张掖市| 新龙县| 平湖市| 额敏县| 兴山县| 安陆市| 贵南县| 新泰市| 会宁县| 长沙县| 栾城县| 柘荣县| 合阳县| 北票市| 东源县| 阿勒泰市| 渝北区| 孟连| 文化| 定兴县| 邓州市| 资阳市| 嫩江县| 乌兰县| 友谊县| 信宜市| 长阳| 南皮县| 德清县| 武宁县| 开阳县| 瑞丽市| 广南县| 开江县| 沈丘县| 永修县| 溧水县|