找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 6th International Wo Sylvain Duquesne,Svetla Petkova-Nikova Conference proceedings 2016 Springer International

[復(fù)制鏈接]
樓主: mobility
31#
發(fā)表于 2025-3-27 00:59:09 | 只看該作者
32#
發(fā)表于 2025-3-27 04:19:51 | 只看該作者
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
33#
發(fā)表于 2025-3-27 08:57:34 | 只看該作者
Advanced Execution Plan Conceptsolean functions to that of Gauss sums. In the case of extensions of degree four times an odd number, an explicit formula involving a Kloosterman sum is conjectured, proved with further restrictions, and supported by extensive experimental data in the general case. In particular, the validity of this
34#
發(fā)表于 2025-3-27 10:39:31 | 只看該作者
35#
發(fā)表于 2025-3-27 13:53:33 | 只看該作者
Arithmetic of Finite Fields978-3-319-55227-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 20:47:31 | 只看該作者
37#
發(fā)表于 2025-3-28 00:07:13 | 只看該作者
https://doi.org/10.1007/978-1-4302-2669-7tivity of the binary operation for the composed product is not necessary. We then investigate binary operations defined by polynomial functions, and give a sufficient condition in terms of degrees for the requirement in the Brawley-Carlitz theorem.
38#
發(fā)表于 2025-3-28 04:17:48 | 只看該作者
39#
發(fā)表于 2025-3-28 06:52:26 | 只看該作者
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
40#
發(fā)表于 2025-3-28 11:11:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑阁县| 葫芦岛市| 嫩江县| 乌拉特前旗| 宿松县| 遂川县| 洪雅县| 保山市| 呼和浩特市| 宁都县| 天门市| 南澳县| 邹城市| 龙南县| 油尖旺区| 双城市| 吉隆县| 连城县| 中阳县| 宁明县| 永嘉县| 和田市| 衡阳县| 昔阳县| 新兴县| 克拉玛依市| 涪陵区| 红桥区| 河池市| 昭通市| 玉树县| 宁城县| 平顺县| 连云港市| 凭祥市| 黄冈市| 兴安县| 蚌埠市| 年辖:市辖区| 黎平县| 连江县|