找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic of Finite Fields; 6th International Wo Sylvain Duquesne,Svetla Petkova-Nikova Conference proceedings 2016 Springer International

[復(fù)制鏈接]
樓主: mobility
31#
發(fā)表于 2025-3-27 00:59:09 | 只看該作者
32#
發(fā)表于 2025-3-27 04:19:51 | 只看該作者
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
33#
發(fā)表于 2025-3-27 08:57:34 | 只看該作者
Advanced Execution Plan Conceptsolean functions to that of Gauss sums. In the case of extensions of degree four times an odd number, an explicit formula involving a Kloosterman sum is conjectured, proved with further restrictions, and supported by extensive experimental data in the general case. In particular, the validity of this
34#
發(fā)表于 2025-3-27 10:39:31 | 只看該作者
35#
發(fā)表于 2025-3-27 13:53:33 | 只看該作者
Arithmetic of Finite Fields978-3-319-55227-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 20:47:31 | 只看該作者
37#
發(fā)表于 2025-3-28 00:07:13 | 只看該作者
https://doi.org/10.1007/978-1-4302-2669-7tivity of the binary operation for the composed product is not necessary. We then investigate binary operations defined by polynomial functions, and give a sufficient condition in terms of degrees for the requirement in the Brawley-Carlitz theorem.
38#
發(fā)表于 2025-3-28 04:17:48 | 只看該作者
39#
發(fā)表于 2025-3-28 06:52:26 | 只看該作者
https://doi.org/10.1007/978-1-4302-6710-2stribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings.
40#
發(fā)表于 2025-3-28 11:11:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青神县| 舒城县| 新竹县| 内江市| 泉州市| 申扎县| 葵青区| 剑阁县| 新沂市| 宜春市| 金山区| 塔城市| 阜平县| 萨嘎县| 武义县| 望城县| 牡丹江市| 额尔古纳市| 修武县| 三江| 鄂伦春自治旗| 当雄县| 通州区| 长宁区| 和顺县| 屏南县| 曲阜市| 景德镇市| 宣威市| 酒泉市| 隆昌县| 华池县| 阜城县| 霍邱县| 夏河县| 腾冲县| 高清| 习水县| 旬邑县| 台江县| 青河县|