找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復(fù)制鏈接]
樓主: Glycemic-Index
31#
發(fā)表于 2025-3-26 21:59:34 | 只看該作者
Explicit Algebraic Coverings of a Pointed TorusThis note contains an application of the algebraic study by Schütt and Shioda of the elliptic modular surface attached to the commutator subgroup of the modular group. This is used here to provide algebraic descriptions of certain coverings of a .-invariant 0 elliptic curve, unramified except over precisely one point.
32#
發(fā)表于 2025-3-27 04:39:49 | 只看該作者
33#
發(fā)表于 2025-3-27 06:46:51 | 只看該作者
Numerical Trivial Automorphisms of Enriques Surfaces in Arbitrary CharacteristicWe extend to arbitrary characteristic some known results on automorphisms of complex Enriques surfaces that act identically on the cohomology or the cohomology modulo torsion.
34#
發(fā)表于 2025-3-27 11:45:54 | 只看該作者
Fourier–Mukai Partners and Polarised , SurfacesThe purpose of this note is twofold. We first review the theory of Fourier–Mukai partners together with the relevant part of Nikulin’s theory of lattice embeddings via discriminants. Then we consider Fourier–Mukai partners of . surfaces in the presence of polarisations, in which case we prove a counting formula for the number of partners.
35#
發(fā)表于 2025-3-27 16:45:23 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:43 | 只看該作者
Expert Oracle Database 10g Administrationeral overview, we begin with some rudimentary aspects of Hodge theory and algebraic cycles. We then introduce Deligne cohomology, as well as the generalized higher cycles due to Bloch that are connected to higher .-theory, and associated regulators. Finally, we specialize to the Calabi–Yau situation
37#
發(fā)表于 2025-3-27 23:13:56 | 只看該作者
38#
發(fā)表于 2025-3-28 02:26:37 | 只看該作者
39#
發(fā)表于 2025-3-28 09:05:34 | 只看該作者
Expert Oracle Database 11g Administration. For this we deduce the Picard–Fuchs equation from the GKZ system. As consequences of our work and facts from the literature, we show a relation between the Picard–Fuchs equation, the Poincaré series and the monodromy in the space of period integrals.
40#
發(fā)表于 2025-3-28 13:42:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇礼县| 互助| 海兴县| 万全县| 慈溪市| 双城市| 牡丹江市| 无极县| 宁德市| 沭阳县| 子洲县| 盘锦市| 延安市| 海伦市| 子长县| 绥芬河市| 云和县| 昭通市| 和顺县| 德化县| 唐海县| 都兰县| 潜山县| 洮南市| 衡山县| 和龙市| 清新县| 噶尔县| 南涧| 昔阳县| 阳城县| 铁力市| 青田县| 土默特左旗| 耒阳市| 大渡口区| 富宁县| 连南| 大埔区| 山西省| 保德县|