找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 13:44:55 | 只看該作者
Oracle Database 11, Architecturet two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
12#
發(fā)表于 2025-3-23 14:45:53 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0be paired with the cohomology classes of complete subvarieties of the moduli space to give classical Siegel modular forms with higher Noether–Lefschetz numbers as Fourier coefficients. Examples of such complete families associated to quadratic spaces over totally real number fields are constructed.
13#
發(fā)表于 2025-3-23 21:37:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0surfaces are characterized among Enriques surfaces by the group action by . with prescribed topological type of fixed point loci. As an application, we construct Mathieu type actions by the groups . and .. Two introductory sections are also included.
14#
發(fā)表于 2025-3-24 01:52:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:40 | 只看該作者
A Structure Theorem for Fibrations on Delsarte Surfacest two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
16#
發(fā)表于 2025-3-24 07:35:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:36:05 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:47 | 只看該作者
https://doi.org/10.1007/978-1-4614-6403-7$K3$ surfaces and Enriques surfaces; Calabi-Yau manifolds; cycles and subschemes; variation of Hodge st
19#
發(fā)表于 2025-3-24 21:09:41 | 只看該作者
978-1-4899-9918-4Springer Science+Business Media New York 2013
20#
發(fā)表于 2025-3-25 01:53:45 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐陵市| 万宁市| 宁国市| 库尔勒市| 凤城市| 平阳县| 湖州市| 杭锦旗| 桐乡市| 长沙县| 修文县| 南漳县| 隆林| 阜南县| 灵武市| 昌平区| 宁南县| 邵武市| 闸北区| 鞍山市| 轮台县| 嘉定区| 拜泉县| 汤阴县| 马公市| 华宁县| 娱乐| 安西县| 娱乐| 西藏| 兰溪市| 蓬莱市| 茶陵县| 芦溪县| 泰和县| 河南省| 阳山县| 京山县| 衡阳县| 包头市| 且末县|