找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 13:44:55 | 只看該作者
Oracle Database 11, Architecturet two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
12#
發(fā)表于 2025-3-23 14:45:53 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0be paired with the cohomology classes of complete subvarieties of the moduli space to give classical Siegel modular forms with higher Noether–Lefschetz numbers as Fourier coefficients. Examples of such complete families associated to quadratic spaces over totally real number fields are constructed.
13#
發(fā)表于 2025-3-23 21:37:37 | 只看該作者
https://doi.org/10.1007/978-1-4302-1016-0surfaces are characterized among Enriques surfaces by the group action by . with prescribed topological type of fixed point loci. As an application, we construct Mathieu type actions by the groups . and .. Two introductory sections are also included.
14#
發(fā)表于 2025-3-24 01:52:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:40 | 只看該作者
A Structure Theorem for Fibrations on Delsarte Surfacest two points where the fiber is singular. As a corollary we show that every Delsarte fibration of genus 1 with nonconstant .-invariant occurs as the base change of an elliptic surface from Fastenberg’s list of rational elliptic surfaces with . < 1.
16#
發(fā)表于 2025-3-24 07:35:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:36:05 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:47 | 只看該作者
https://doi.org/10.1007/978-1-4614-6403-7$K3$ surfaces and Enriques surfaces; Calabi-Yau manifolds; cycles and subschemes; variation of Hodge st
19#
發(fā)表于 2025-3-24 21:09:41 | 只看該作者
978-1-4899-9918-4Springer Science+Business Media New York 2013
20#
發(fā)表于 2025-3-25 01:53:45 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武邑县| 甘谷县| 阳曲县| 延长县| 色达县| 岳阳县| 田东县| 炎陵县| 娱乐| 富顺县| 万载县| 厦门市| 大兴区| 那坡县| 中超| 揭西县| 河曲县| 宜都市| 呼和浩特市| 商城县| 马公市| 池州市| 玉田县| 蓝山县| 旬阳县| 新平| 磐安县| 普宁市| 米脂县| 广灵县| 遂宁市| 东乌| 邯郸县| 新巴尔虎左旗| 临夏县| 方山县| 江山市| 峡江县| 临泽县| 洮南市| 九江市|