找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復(fù)制鏈接]
樓主: Glycemic-Index
21#
發(fā)表于 2025-3-25 06:28:27 | 只看該作者
22#
發(fā)表于 2025-3-25 07:34:20 | 只看該作者
23#
發(fā)表于 2025-3-25 13:56:48 | 只看該作者
User Management and Database SecurityIn these lecture notes we review different aspects of the arithmetic of K3 surfaces. Topics include rational points, Picard number and Tate conjecture, zeta functions and modularity.
24#
發(fā)表于 2025-3-25 17:08:55 | 只看該作者
25#
發(fā)表于 2025-3-25 22:00:12 | 只看該作者
User Management and Database SecurityWe give all the elliptic fibrations of the K3 surface associated to the modular group Γ.(8).
26#
發(fā)表于 2025-3-26 01:32:04 | 只看該作者
User Management and Database SecurityWe extend to arbitrary characteristic some known results on automorphisms of complex Enriques surfaces that act identically on the cohomology or the cohomology modulo torsion.
27#
發(fā)表于 2025-3-26 08:08:37 | 只看該作者
User Management and Database SecurityThe purpose of this note is twofold. We first review the theory of Fourier–Mukai partners together with the relevant part of Nikulin’s theory of lattice embeddings via discriminants. Then we consider Fourier–Mukai partners of . surfaces in the presence of polarisations, in which case we prove a counting formula for the number of partners.
28#
發(fā)表于 2025-3-26 08:50:40 | 只看該作者
29#
發(fā)表于 2025-3-26 12:38:44 | 只看該作者
K3 and Enriques SurfacesThis is a note on my introductory lectures on .3 and Enriques surfaces in the workshop “Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds” held at the Fields Institute. No new results are included.
30#
發(fā)表于 2025-3-26 17:41:35 | 只看該作者
Two Lectures on the Arithmetic of K3 SurfacesIn these lecture notes we review different aspects of the arithmetic of K3 surfaces. Topics include rational points, Picard number and Tate conjecture, zeta functions and modularity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
毕节市| 贵定县| 宿松县| 唐山市| 会泽县| 双牌县| 海兴县| 晋州市| 永登县| 安西县| 红河县| 荥经县| 元氏县| 新邵县| 武冈市| 林口县| SHOW| 永德县| 耒阳市| 叶城县| 开原市| 福泉市| 宁晋县| 烟台市| 朝阳县| 闵行区| 遂宁市| 阜新| 铁岭县| 长垣县| 贵州省| 建平县| 姜堰市| 长岛县| 华安县| 清远市| 邻水| 巢湖市| 丹巴县| 石嘴山市| 胶南市|