找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds; Radu Laza,Matthias Schütt,Noriko Yui Book 2013 Springer Science+Business

[復(fù)制鏈接]
樓主: Glycemic-Index
21#
發(fā)表于 2025-3-25 06:28:27 | 只看該作者
22#
發(fā)表于 2025-3-25 07:34:20 | 只看該作者
23#
發(fā)表于 2025-3-25 13:56:48 | 只看該作者
User Management and Database SecurityIn these lecture notes we review different aspects of the arithmetic of K3 surfaces. Topics include rational points, Picard number and Tate conjecture, zeta functions and modularity.
24#
發(fā)表于 2025-3-25 17:08:55 | 只看該作者
25#
發(fā)表于 2025-3-25 22:00:12 | 只看該作者
User Management and Database SecurityWe give all the elliptic fibrations of the K3 surface associated to the modular group Γ.(8).
26#
發(fā)表于 2025-3-26 01:32:04 | 只看該作者
User Management and Database SecurityWe extend to arbitrary characteristic some known results on automorphisms of complex Enriques surfaces that act identically on the cohomology or the cohomology modulo torsion.
27#
發(fā)表于 2025-3-26 08:08:37 | 只看該作者
User Management and Database SecurityThe purpose of this note is twofold. We first review the theory of Fourier–Mukai partners together with the relevant part of Nikulin’s theory of lattice embeddings via discriminants. Then we consider Fourier–Mukai partners of . surfaces in the presence of polarisations, in which case we prove a counting formula for the number of partners.
28#
發(fā)表于 2025-3-26 08:50:40 | 只看該作者
29#
發(fā)表于 2025-3-26 12:38:44 | 只看該作者
K3 and Enriques SurfacesThis is a note on my introductory lectures on .3 and Enriques surfaces in the workshop “Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds” held at the Fields Institute. No new results are included.
30#
發(fā)表于 2025-3-26 17:41:35 | 只看該作者
Two Lectures on the Arithmetic of K3 SurfacesIn these lecture notes we review different aspects of the arithmetic of K3 surfaces. Topics include rational points, Picard number and Tate conjecture, zeta functions and modularity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定边县| 郸城县| 闻喜县| 滨海县| 平谷区| 涿鹿县| 宜宾市| 蒙城县| 泌阳县| 五寨县| 江孜县| 山东省| 扬中市| 于田县| 绥江县| 大足县| 应城市| 康平县| 商都县| 石泉县| 巴林右旗| 湾仔区| 美姑县| 集安市| 上蔡县| 武功县| 进贤县| 栾城县| 招远市| 南充市| 清苑县| 嘉禾县| 潼关县| 安泽县| 济源市| 高清| 含山县| 南溪县| 南开区| 龙井市| 新安县|