找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[復(fù)制鏈接]
樓主: autoantibodies
41#
發(fā)表于 2025-3-28 15:03:44 | 只看該作者
42#
發(fā)表于 2025-3-28 22:19:50 | 只看該作者
Fourier Transformation of Power-Type Hyperfunctions, as ordinary functions. However, as will be seen later, these power-type hyperfunctions play decisive roles when we investigate the asymptotic behaviour of the Fourier transforms .(ξ) = ..(.) for ξ → ∞ for a given function . (.).
43#
發(fā)表于 2025-3-29 01:35:46 | 只看該作者
44#
發(fā)表于 2025-3-29 04:21:24 | 只看該作者
45#
發(fā)表于 2025-3-29 07:45:05 | 只看該作者
46#
發(fā)表于 2025-3-29 12:53:55 | 只看該作者
Poisson-Schwarz Integral Formulae,en D is a circle or a halfplane, formulae to express the solution are known and are called the .. In this chapter, we discuss these formulae and related facts from the viewpoint of hyperfunction theory. As an example of their application we deal with integral equations related to the Hilbert transforms.
47#
發(fā)表于 2025-3-29 18:35:35 | 只看該作者
Miriam-Linnea Hale,André Melzert . = O. Therefore, ..(.) and ..(.) are simpler than .(.) itself, so that it may be convenient to consider hyperfunctions corresponding to .. (.) and ..(.) and to combine them to obtain the hyperfunction corresponding to .(.).
48#
發(fā)表于 2025-3-29 21:09:51 | 只看該作者
49#
發(fā)表于 2025-3-30 01:10:45 | 只看該作者
50#
發(fā)表于 2025-3-30 05:41:10 | 只看該作者
Periodic Hyperfunctions and Fourier Series Fourier Series,his chapter we study periodic hyperfunctions. Then we shall see that the theory of Fourier series is naturally absorbed into the theory of Fourier transformations. For this purpose, we shall first introduce the concept of standard generating functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿鲁科尔沁旗| 龙陵县| 怀安县| 六安市| 庆云县| 西乡县| 建昌县| 宁海县| 广平县| 周至县| 荔波县| 确山县| 凤台县| 巴林右旗| 苗栗市| 柳河县| 黄陵县| 桂阳县| 霍林郭勒市| 拜泉县| 普兰县| 平潭县| 沿河| 湘阴县| 湟源县| 灯塔市| 屏南县| 府谷县| 庆城县| 沽源县| 兴和县| 三门县| 大新县| 札达县| 兴山县| 英山县| 桂东县| 巴林左旗| 庆城县| 昌邑市| 舞阳县|