找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[復制鏈接]
樓主: autoantibodies
11#
發(fā)表于 2025-3-23 13:14:56 | 只看該作者
12#
發(fā)表于 2025-3-23 17:01:43 | 只看該作者
Product of Hyperfunctions,tion, multiplication and division, the first two are, of course, possible as linear combinations. There are, however, problems with multiplication and division. It may even seem meaningless to consider products of hyperfunctions in a theory such as the Schwartz distribution theory which is based on
13#
發(fā)表于 2025-3-23 21:11:18 | 只看該作者
14#
發(fā)表于 2025-3-24 00:16:49 | 只看該作者
Hilbert Transforms and Conjugate Hyperfunctions,t chapter is to treat them in a unified way from the viewpoint of hyperfunction theory. It will be seen that Hilbert transformation is just the same as convolution with the hyperfunction 1/. and the conjugate Fourier series is the Hilbert transform of a periodic hyperfunction (i.e. Fourier series).
15#
發(fā)表于 2025-3-24 04:29:38 | 只看該作者
Poisson-Schwarz Integral Formulae,its normal derivative δФ/δn assumes specified values on the boundary. Many problems of physics and engineering can be reduced to this problem. In two-dimensional problems, an equivalent is to find an analytic function . regular in D such that Re . or Im . assumes specified values on the boundary. Wh
16#
發(fā)表于 2025-3-24 09:30:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:40:04 | 只看該作者
Laplace Transforms,m is worked out for hyperfunctions, the theory will have much broader applicability than it has for ordinary functions. However, we need not deal with the Laplace transform .. We can deal with it as a variant representation of the Fourier transform in the framework of the theory of the Fourier trans
18#
發(fā)表于 2025-3-24 18:29:03 | 只看該作者
19#
發(fā)表于 2025-3-24 22:56:40 | 只看該作者
Xiaoxu Li,Marcel Wira,Ruck Thawonmasd side represents ‘something’ determined by a pair of analytic functions: ..(.), F.-(.) , and write .. We call this ‘something‘ a .. To save space, it may be written [F.(.), F.(.)]. Alternatively, we may write the pair ..(.), .-(.) simply as .(.), so that (1.2) becomes: .(.)→.(.). (1.3)
20#
發(fā)表于 2025-3-25 02:08:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
金阳县| 丹寨县| 巩义市| 仁怀市| 渭源县| 溧水县| 赤壁市| 永康市| 洞头县| 南开区| 连山| 潼关县| 九龙城区| 民勤县| 宜州市| 佛冈县| 济宁市| 应用必备| 赤水市| 正镶白旗| 连平县| 勃利县| 湟中县| 略阳县| 文成县| 龙川县| 巴林左旗| 甘肃省| 德化县| 博客| 宝清县| 卢氏县| 蒙自县| 林口县| 寿宁县| 沛县| 永丰县| 南川市| 江川县| 衡水市| 凉城县|