找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[復(fù)制鏈接]
查看: 45501|回復(fù): 64
樓主
發(fā)表于 2025-3-21 19:13:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applied Hyperfunction Theory
影響因子2023Isao Imai
視頻videohttp://file.papertrans.cn/160/159862/159862.mp4
學(xué)科分類Mathematics and its Applications
圖書封面Titlebook: Applied Hyperfunction Theory;  Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen
影響因子Generalized functions are now widely recognized as importantmathematical tools for engineers and physicists. But they areconsidered to be inaccessible for non-specialists. To remedy thissituation, this book gives an intelligible exposition of generalizedfunctions based on Sato‘s hyperfunction, which is essentially the`boundary value of analytic functions‘. An intuitive image --hyperfunction = vortex layer -- is adopted, and only an elementaryknowledge of complex function theory is assumed. The treatment isentirely self-contained. .The first part of the book gives a detailed account of fundamentaloperations such as the four arithmetical operations applicable tohyperfunctions, namely differentiation, integration, and convolution,as well as Fourier transform. Fourier series are seen to be nothingbut periodic hyperfunctions. In the second part, based on the generaltheory, the Hilbert transform and Poisson-Schwarz integral formula aretreated and their application to integral equations is studied. Agreat number of formulas obtained in the course of treatment aresummarized as tables in the appendix. In particular, those concerningconvolution, the Hilbert transform and Fourier transform co
Pindex Book 1992
The information of publication is updating

書目名稱Applied Hyperfunction Theory影響因子(影響力)




書目名稱Applied Hyperfunction Theory影響因子(影響力)學(xué)科排名




書目名稱Applied Hyperfunction Theory網(wǎng)絡(luò)公開度




書目名稱Applied Hyperfunction Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Hyperfunction Theory被引頻次




書目名稱Applied Hyperfunction Theory被引頻次學(xué)科排名




書目名稱Applied Hyperfunction Theory年度引用




書目名稱Applied Hyperfunction Theory年度引用學(xué)科排名




書目名稱Applied Hyperfunction Theory讀者反饋




書目名稱Applied Hyperfunction Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:18:18 | 只看該作者
Basic Hyperfunctions,rentiation and definite integration. Then, not only almost all familiar functions, but also objects such as the δ-function, can be reinterpreted as hyperfunctions and dealt with in a unified way. In this chapter we discuss, in detail, several examples of basic hyperfunctions. We begin with character
地板
發(fā)表于 2025-3-22 04:33:50 | 只看該作者
5#
發(fā)表于 2025-3-22 12:24:05 | 只看該作者
Fourier Transformation, Thus, we now have a basis on which we can perform differentiation and integration of hyperfunctions without obstacles. In the present chapter, we start the theory of Fourier transformations of hyperfunctions. In physical sciences and engineering, some problems are conveniently dealt with by Fourier
6#
發(fā)表于 2025-3-22 15:43:58 | 只看該作者
7#
發(fā)表于 2025-3-22 18:20:24 | 只看該作者
8#
發(fā)表于 2025-3-22 23:00:04 | 只看該作者
Fourier Transforms-Existence and Regularity,main of functions (hyperfunctions) e.g. .1 = δ(.), .. = -..δ(ξ), .(1/x) = -π.sgnξ, .... The Fourier transform .(ξ) = ..(.) of a hyperfunction .(.) = H. F. .(.) is defined by .. (Definition 5.1.) Contours . and . of (1.2) consist of two semi-infinite curves each as shown in Figure 1. Whenever the int
9#
發(fā)表于 2025-3-23 03:42:42 | 只看該作者
Fourier Transform-Asymptotic Behaviour,) may or may not be expressed in a closed form, i.e. in terms of known functions. In such a case we have to return to the definition of Fourier transformation and calculate numerically the infinite integral .. If ξ is not very large, numerical integration can be performed relatively easily, but for
10#
發(fā)表于 2025-3-23 07:51:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华蓥市| 浏阳市| 辉县市| 名山县| 谷城县| 台北市| 聂荣县| 阳原县| 巴里| 松潘县| 贵德县| 泸水县| 沅陵县| 南召县| 阳新县| 绥宁县| 慈溪市| 平泉县| 泰州市| 囊谦县| 汉中市| 闵行区| 陆川县| 阿坝| 罗源县| 犍为县| 汕尾市| 大石桥市| 玉龙| 湘西| 萝北县| 崇义县| 沁阳市| 天门市| 屯门区| 秀山| 麻栗坡县| 河源市| 阜城县| 运城市| 抚宁县|