找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[復(fù)制鏈接]
樓主: autoantibodies
41#
發(fā)表于 2025-3-28 15:03:44 | 只看該作者
42#
發(fā)表于 2025-3-28 22:19:50 | 只看該作者
Fourier Transformation of Power-Type Hyperfunctions, as ordinary functions. However, as will be seen later, these power-type hyperfunctions play decisive roles when we investigate the asymptotic behaviour of the Fourier transforms .(ξ) = ..(.) for ξ → ∞ for a given function . (.).
43#
發(fā)表于 2025-3-29 01:35:46 | 只看該作者
44#
發(fā)表于 2025-3-29 04:21:24 | 只看該作者
45#
發(fā)表于 2025-3-29 07:45:05 | 只看該作者
46#
發(fā)表于 2025-3-29 12:53:55 | 只看該作者
Poisson-Schwarz Integral Formulae,en D is a circle or a halfplane, formulae to express the solution are known and are called the .. In this chapter, we discuss these formulae and related facts from the viewpoint of hyperfunction theory. As an example of their application we deal with integral equations related to the Hilbert transforms.
47#
發(fā)表于 2025-3-29 18:35:35 | 只看該作者
Miriam-Linnea Hale,André Melzert . = O. Therefore, ..(.) and ..(.) are simpler than .(.) itself, so that it may be convenient to consider hyperfunctions corresponding to .. (.) and ..(.) and to combine them to obtain the hyperfunction corresponding to .(.).
48#
發(fā)表于 2025-3-29 21:09:51 | 只看該作者
49#
發(fā)表于 2025-3-30 01:10:45 | 只看該作者
50#
發(fā)表于 2025-3-30 05:41:10 | 只看該作者
Periodic Hyperfunctions and Fourier Series Fourier Series,his chapter we study periodic hyperfunctions. Then we shall see that the theory of Fourier series is naturally absorbed into the theory of Fourier transformations. For this purpose, we shall first introduce the concept of standard generating functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌都县| 娱乐| 衡东县| 修文县| 乌拉特前旗| 漠河县| 阳泉市| 白河县| 嘉黎县| 西华县| 高邑县| 宣武区| 柞水县| 武安市| 筠连县| 敖汉旗| 岑溪市| 朝阳县| 聂拉木县| 宜阳县| 丰宁| 岳阳县| 岫岩| 沁水县| 沙洋县| 酉阳| 富阳市| 莱西市| 商丘市| 陆良县| 陕西省| 定西市| 育儿| 江北区| 德庆县| 柳州市| 呼和浩特市| 贡山| 阿克苏市| 南开区| 双江|