找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies; L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal

[復(fù)制鏈接]
樓主: ISSUE
21#
發(fā)表于 2025-3-25 03:39:09 | 只看該作者
Generalized KP Hierarchy,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
22#
發(fā)表于 2025-3-25 07:49:55 | 只看該作者
https://doi.org/10.1007/978-3-540-78289-6 start for most of the material presented in this book. We do not develop a full-scale formalism, but rather show the connections of the Hirota bilinear identity to the context of boundary problems for the ˉ?-operator in the unit disc (or, more generally, some set of domains of the complex plane). T
23#
發(fā)表于 2025-3-25 14:21:31 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:43 | 只看該作者
25#
發(fā)表于 2025-3-25 22:58:32 | 只看該作者
Discrete-Time Neural Observers,y connected with two of them, namely the Sato approach [.] (see also [., ., ., ., .]) and the ˉ?-dressing method [., ., ., .]. The main elements of the consistent analytic-bilinear approach to integrable hierarchies were developed in [.], [.] (see also [.], [.]).
26#
發(fā)表于 2025-3-26 02:17:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:10:36 | 只看該作者
28#
發(fā)表于 2025-3-26 11:36:20 | 只看該作者
https://doi.org/10.1007/978-94-011-4495-7Complex analysis; functional equation; mathematical physics; partial differential equation; topological
29#
發(fā)表于 2025-3-26 15:20:51 | 只看該作者
30#
發(fā)表于 2025-3-26 20:36:20 | 只看該作者
Discrete-Time Neural Observers,The main objects studied in this book are the generalized Kadomtsev-Petviashvili (KP) hierarchy and generalized multicomponent KP hierarchy, which unite several different types of continuous and discrete integrable systems connected with the standard KP and multicomponent KP hierarchies.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凯里市| 犍为县| 潼南县| 庄浪县| 奉化市| 东丰县| 孟津县| 南华县| 当阳市| 农安县| 肃南| 阳朔县| 湘潭市| 乐平市| 保德县| 广平县| 黄浦区| 庄浪县| 抚顺县| 渭南市| 永丰县| 丰宁| 长沙市| 天镇县| 潜江市| 西乌珠穆沁旗| 得荣县| 东乌珠穆沁旗| 抚远县| 镇安县| 永康市| 大安市| 夏邑县| 新龙县| 津南区| 克什克腾旗| 安康市| 朝阳县| 鄂托克旗| 芜湖县| 哈尔滨市|