找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies; L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal

[復(fù)制鏈接]
查看: 54324|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:46:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analytic-Bilinear Approach to Integrable Hierarchies
影響因子2023L. V. Bogdanov
視頻videohttp://file.papertrans.cn/157/156565/156565.mp4
學(xué)科分類Mathematics and Its Applications
圖書封面Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies;  L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal
影響因子The subject of this book is the hierarchies of integrable equations connected with the one-component and multi component loop groups. There are many publications on this subject, and it is rather well defined. Thus, the author would like t.o explain why he has taken the risk of revisiting the subject. The Sato Grassmannian approach, and other approaches standard in this context, reveal deep mathematical structures in the base of the integrable hi- erarchies. These approaches concentrate mostly on the algebraic picture, and they use a language suitable for applications to quantum field theory. Another well-known approach, the a-dressing method, developed by S. V. Manakov and V.E. Zakharov, is oriented mostly to particular systems and ex- act classes of their solutions. There is more emphasis on analytic properties, and the technique is connected with standard complex analysis. The language of the a-dressing method is suitable for applications to integrable nonlinear PDEs, integrable nonlinear discrete equations, and, as recently discovered, for t.he applications of integrable systems to continuous and discret.e geometry. The primary motivation of the author was to formalize the appr
Pindex Book 1999
The information of publication is updating

書目名稱Analytic-Bilinear Approach to Integrable Hierarchies影響因子(影響力)




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies影響因子(影響力)學(xué)科排名




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies網(wǎng)絡(luò)公開度




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies被引頻次




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies被引頻次學(xué)科排名




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies年度引用




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies年度引用學(xué)科排名




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies讀者反饋




書目名稱Analytic-Bilinear Approach to Integrable Hierarchies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:33:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:22:47 | 只看該作者
地板
發(fā)表于 2025-3-22 08:08:33 | 只看該作者
Hirota Bilinear Identity for the Cauchy Kernel,his context, is less standard in the theory of integrable systems than, say, infinite dimensional Grassmannian [.], [.], but it has also attracted some attention (e.g., the work of Witten [.]). Working in this framework, we emphasize analytic rather then algebraic properties of the Hirota bilinear identity, using quite elementary complex analysis.
5#
發(fā)表于 2025-3-22 09:57:57 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:10 | 只看該作者
7#
發(fā)表于 2025-3-22 18:53:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:36:17 | 只看該作者
9#
發(fā)表于 2025-3-23 03:57:51 | 只看該作者
Analytic-Bilinear Approach to Integrable Hierarchies
10#
發(fā)表于 2025-3-23 07:12:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康乐县| 博罗县| 淮滨县| 治多县| 佳木斯市| 祁东县| 灵寿县| 南京市| 晋城| 鄄城县| 鞍山市| 邹平县| 高雄县| 德惠市| 临安市| 新昌县| 建宁县| 灌阳县| 阿克陶县| 东阳市| 萝北县| 邵武市| 安达市| 临猗县| 陇川县| 海兴县| 邯郸县| 柯坪县| 普洱| 仁化县| 绥滨县| 文昌市| 肇州县| 思南县| 博兴县| 射洪县| 建昌县| 上饶县| 时尚| 含山县| 山阳县|