找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies; L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal

[復(fù)制鏈接]
查看: 54317|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:46:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analytic-Bilinear Approach to Integrable Hierarchies
影響因子2023L. V. Bogdanov
視頻videohttp://file.papertrans.cn/157/156565/156565.mp4
學(xué)科分類(lèi)Mathematics and Its Applications
圖書(shū)封面Titlebook: Analytic-Bilinear Approach to Integrable Hierarchies;  L. V. Bogdanov Book 1999 Springer Science+Business Media Dordrecht 1999 Complex anal
影響因子The subject of this book is the hierarchies of integrable equations connected with the one-component and multi component loop groups. There are many publications on this subject, and it is rather well defined. Thus, the author would like t.o explain why he has taken the risk of revisiting the subject. The Sato Grassmannian approach, and other approaches standard in this context, reveal deep mathematical structures in the base of the integrable hi- erarchies. These approaches concentrate mostly on the algebraic picture, and they use a language suitable for applications to quantum field theory. Another well-known approach, the a-dressing method, developed by S. V. Manakov and V.E. Zakharov, is oriented mostly to particular systems and ex- act classes of their solutions. There is more emphasis on analytic properties, and the technique is connected with standard complex analysis. The language of the a-dressing method is suitable for applications to integrable nonlinear PDEs, integrable nonlinear discrete equations, and, as recently discovered, for t.he applications of integrable systems to continuous and discret.e geometry. The primary motivation of the author was to formalize the appr
Pindex Book 1999
The information of publication is updating

書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies影響因子(影響力)




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies影響因子(影響力)學(xué)科排名




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies被引頻次




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies被引頻次學(xué)科排名




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies年度引用




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies年度引用學(xué)科排名




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies讀者反饋




書(shū)目名稱Analytic-Bilinear Approach to Integrable Hierarchies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:33:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:22:47 | 只看該作者
地板
發(fā)表于 2025-3-22 08:08:33 | 只看該作者
Hirota Bilinear Identity for the Cauchy Kernel,his context, is less standard in the theory of integrable systems than, say, infinite dimensional Grassmannian [.], [.], but it has also attracted some attention (e.g., the work of Witten [.]). Working in this framework, we emphasize analytic rather then algebraic properties of the Hirota bilinear identity, using quite elementary complex analysis.
5#
發(fā)表于 2025-3-22 09:57:57 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:10 | 只看該作者
7#
發(fā)表于 2025-3-22 18:53:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:36:17 | 只看該作者
9#
發(fā)表于 2025-3-23 03:57:51 | 只看該作者
Analytic-Bilinear Approach to Integrable Hierarchies
10#
發(fā)表于 2025-3-23 07:12:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙泉市| 杂多县| 景东| 塘沽区| 新巴尔虎左旗| 柯坪县| 无棣县| 盱眙县| 民和| 武川县| 习水县| 横峰县| 昌江| 遂昌县| 肥城市| 银川市| 蚌埠市| 乐平市| 重庆市| 南投市| 东丰县| 新乡市| 安岳县| 马公市| 安新县| 鞍山市| 保德县| 沛县| 德州市| 闵行区| 枣庄市| 昌乐县| 黎城县| 武强县| 曲周县| 宜君县| 文山县| 云南省| 绥阳县| 建德市| 凉城县|