找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Language of Category Theory; Steven Roman Textbook 2017 The Author(s) 2017 Category Theory.Category.Functor.Adjoint

[復(fù)制鏈接]
樓主: ALOOF
11#
發(fā)表于 2025-3-23 11:59:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:46:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:48 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:09 | 只看該作者
An Introduction to the Language of Category Theory978-3-319-41917-6Series ISSN 2296-4568 Series E-ISSN 2296-455X
15#
發(fā)表于 2025-3-24 05:26:38 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:52 | 只看該作者
Bezugsrahmen und Gestaltungsempfehlungen,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.
17#
發(fā)表于 2025-3-24 14:42:38 | 只看該作者
Categories,y theory, one often wishes to speak of “the category of (all) sets” or “the category of (all) groups.” However, it is well known that these descriptions cannot be made precise within the context of sets alone.
18#
發(fā)表于 2025-3-24 17:41:25 | 只看該作者
Adjoints,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.
19#
發(fā)表于 2025-3-24 22:19:18 | 只看該作者
Textbook 2017, special types of morphisms, and some special types of categories,.particularly comma categories and hom-set categories. ?Chapter 2 is devoted to functors and natural.transformations, concluding with Yoneda‘s lemma. ?Chapter 3 presents the concept of universality and Chapter 4 continues this discus
20#
發(fā)表于 2025-3-25 02:06:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青神县| 朔州市| 凯里市| 霍山县| 广丰县| 双辽市| 鲁山县| 呼伦贝尔市| 葫芦岛市| 镇安县| 辽阳县| 渑池县| 邹平县| 抚远县| 寻甸| 东城区| 福清市| 东乌珠穆沁旗| 莒南县| 河南省| 东城区| 雷州市| 阳春市| 江安县| 洞头县| 道孚县| 赣州市| 扬中市| 富平县| 年辖:市辖区| 镇沅| 昌宁县| 永兴县| 瑞金市| 永仁县| 巴马| 莱西市| 富平县| 禄劝| 叶城县| 象山县|