找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Language of Category Theory; Steven Roman Textbook 2017 The Author(s) 2017 Category Theory.Category.Functor.Adjoint

[復制鏈接]
查看: 7307|回復: 38
樓主
發(fā)表于 2025-3-21 19:13:01 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to the Language of Category Theory
影響因子2023Steven Roman
視頻videohttp://file.papertrans.cn/156/155560/155560.mp4
發(fā)行地址Presents all the basic concepts of category theory without requiring any preliminary knowledge.Employs friendly, less-formal language and notation to allow reader to focus more on the main concepts, w
學科分類Compact Textbooks in Mathematics
圖書封面Titlebook: An Introduction to the Language of Category Theory;  Steven Roman Textbook 2017 The Author(s) 2017 Category Theory.Category.Functor.Adjoint
影響因子This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. ?In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics..The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra.?.The first chapter of the book introduces the definitions of category and functor and discusses diagrams,.duality, initial and terminal objects, special types of morphisms, and some special types of categories,.particularly comma categories and hom-set categories. ?Chapter 2 is devoted to functors and natural.transformations, concluding with Yoneda‘s lemma. ?Chapter 3 presents the concept of universality and Chapter 4 continues this discus
Pindex Textbook 2017
The information of publication is updating

書目名稱An Introduction to the Language of Category Theory影響因子(影響力)




書目名稱An Introduction to the Language of Category Theory影響因子(影響力)學科排名




書目名稱An Introduction to the Language of Category Theory網(wǎng)絡公開度




書目名稱An Introduction to the Language of Category Theory網(wǎng)絡公開度學科排名




書目名稱An Introduction to the Language of Category Theory被引頻次




書目名稱An Introduction to the Language of Category Theory被引頻次學科排名




書目名稱An Introduction to the Language of Category Theory年度引用




書目名稱An Introduction to the Language of Category Theory年度引用學科排名




書目名稱An Introduction to the Language of Category Theory讀者反饋




書目名稱An Introduction to the Language of Category Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:03:54 | 只看該作者
Adjoints,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.
板凳
發(fā)表于 2025-3-22 03:41:23 | 只看該作者
https://doi.org/10.1007/978-3-662-64605-2y theory, one often wishes to speak of “the category of (all) sets” or “the category of (all) groups.” However, it is well known that these descriptions cannot be made precise within the context of sets alone.
地板
發(fā)表于 2025-3-22 04:37:01 | 只看該作者
Bezugsrahmen und Gestaltungsempfehlungen,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.
5#
發(fā)表于 2025-3-22 11:02:41 | 只看該作者
6#
發(fā)表于 2025-3-22 13:35:37 | 只看該作者
7#
發(fā)表于 2025-3-22 17:39:22 | 只看該作者
https://doi.org/10.1007/978-3-662-64605-2Let us now take a closer look at functors, beginning with some additional examples.
8#
發(fā)表于 2025-3-23 01:14:30 | 只看該作者
https://doi.org/10.1007/978-3-662-64605-2Let us recall the definition of a comma category (mid level of generalization). If . is a functor and . is an (anchor) object, then the comma category (.?→?.) is the category whose objects are the pairs.for .. Moreover, a morphism.between comma objects is essentially just a morphism .: .?→?. in . for which.(We have dropped the overbar notation ..)
9#
發(fā)表于 2025-3-23 01:51:54 | 只看該作者
Wissen, Innovationen und ProzesseWe wish to continue our exploration of universality with some additional examples. For this, we need to define a few more categorical concepts.
10#
發(fā)表于 2025-3-23 06:39:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
肇东市| 鄱阳县| 饶平县| 平凉市| 鄂州市| 枝江市| 华蓥市| 札达县| 揭东县| 咸丰县| 溧阳市| 旬阳县| 崇义县| 遵化市| 通江县| 南和县| 沁阳市| 连山| 新余市| 砚山县| 南陵县| 衡阳市| 防城港市| 固安县| 滁州市| 登封市| 赤水市| 营山县| 元谋县| 呈贡县| 修文县| 吉首市| 恩平市| 盐源县| 潢川县| 惠安县| 黑山县| 丹凤县| 嘉善县| 板桥市| 楚雄市|