找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Language of Category Theory; Steven Roman Textbook 2017 The Author(s) 2017 Category Theory.Category.Functor.Adjoint

[復(fù)制鏈接]
查看: 7308|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:13:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)An Introduction to the Language of Category Theory
影響因子2023Steven Roman
視頻videohttp://file.papertrans.cn/156/155560/155560.mp4
發(fā)行地址Presents all the basic concepts of category theory without requiring any preliminary knowledge.Employs friendly, less-formal language and notation to allow reader to focus more on the main concepts, w
學(xué)科分類(lèi)Compact Textbooks in Mathematics
圖書(shū)封面Titlebook: An Introduction to the Language of Category Theory;  Steven Roman Textbook 2017 The Author(s) 2017 Category Theory.Category.Functor.Adjoint
影響因子This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. ?In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics..The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra.?.The first chapter of the book introduces the definitions of category and functor and discusses diagrams,.duality, initial and terminal objects, special types of morphisms, and some special types of categories,.particularly comma categories and hom-set categories. ?Chapter 2 is devoted to functors and natural.transformations, concluding with Yoneda‘s lemma. ?Chapter 3 presents the concept of universality and Chapter 4 continues this discus
Pindex Textbook 2017
The information of publication is updating

書(shū)目名稱(chēng)An Introduction to the Language of Category Theory影響因子(影響力)




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory被引頻次




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory被引頻次學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory年度引用




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory年度引用學(xué)科排名




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory讀者反饋




書(shū)目名稱(chēng)An Introduction to the Language of Category Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:54 | 只看該作者
Adjoints,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.
板凳
發(fā)表于 2025-3-22 03:41:23 | 只看該作者
https://doi.org/10.1007/978-3-662-64605-2y theory, one often wishes to speak of “the category of (all) sets” or “the category of (all) groups.” However, it is well known that these descriptions cannot be made precise within the context of sets alone.
地板
發(fā)表于 2025-3-22 04:37:01 | 只看該作者
Bezugsrahmen und Gestaltungsempfehlungen,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.
5#
發(fā)表于 2025-3-22 11:02:41 | 只看該作者
6#
發(fā)表于 2025-3-22 13:35:37 | 只看該作者
7#
發(fā)表于 2025-3-22 17:39:22 | 只看該作者
https://doi.org/10.1007/978-3-662-64605-2Let us now take a closer look at functors, beginning with some additional examples.
8#
發(fā)表于 2025-3-23 01:14:30 | 只看該作者
https://doi.org/10.1007/978-3-662-64605-2Let us recall the definition of a comma category (mid level of generalization). If . is a functor and . is an (anchor) object, then the comma category (.?→?.) is the category whose objects are the pairs.for .. Moreover, a morphism.between comma objects is essentially just a morphism .: .?→?. in . for which.(We have dropped the overbar notation ..)
9#
發(fā)表于 2025-3-23 01:51:54 | 只看該作者
Wissen, Innovationen und ProzesseWe wish to continue our exploration of universality with some additional examples. For this, we need to define a few more categorical concepts.
10#
發(fā)表于 2025-3-23 06:39:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交口县| 浮梁县| 鞍山市| 东光县| 孟连| 桂东县| 武定县| 张家川| 新疆| 双牌县| 板桥市| 克东县| 鹿邑县| 安西县| 普定县| 红安县| 安泽县| 库车县| 凤凰县| 咸宁市| 宜城市| 鄢陵县| 卢龙县| 简阳市| 威海市| 井研县| 达孜县| 美姑县| 抚松县| 湖州市| 韶山市| 大洼县| 乳山市| 和龙市| 英德市| 汕尾市| 石家庄市| 云和县| 铁岭市| 罗江县| 那坡县|