找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Theory of Generalized Inverses; Jianlong Chen,Xiaoxiang Zhang Book 2024 Science Press 2024 Algebraic equation.regularity.Moore—P

[復(fù)制鏈接]
查看: 13294|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:35:19 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebraic Theory of Generalized Inverses
影響因子2023Jianlong Chen,Xiaoxiang Zhang
視頻videohttp://file.papertrans.cn/153/152713/152713.mp4
發(fā)行地址Discusses generalized inverses in the most general setting.Relates the behavior of generalized inverses to the classical ring-theoretical properties.Covers results on two new types of generalized inve
圖書封面Titlebook: Algebraic Theory of Generalized Inverses;  Jianlong Chen,Xiaoxiang Zhang Book 2024 Science Press 2024 Algebraic equation.regularity.Moore—P
影響因子.Most of the existing monographs on generalized inverses are based on linear algebra tools and geometric methods of Banach (Hilbert) spaces to introduce generalized inverses of complex matrices and operators and their related applications, or focus on generalized inverses of matrices over special rings like division rings and integral domains, and does not include the results in general algebraic structures such as arbitrary rings, semigroups and categories, which are precisely the most general cases..In this book, five important generalized inverses are introduced in these algebraic structures. Moreover, noting that the (pseudo) core inverse was introduced in the last decade and has attracted much attention, this book also covers the very rich research results on it, so as to be a necessary supplement to the existing monographs. This book starts with decompositions of matrices, introduces the basic properties of generalized inverses of matrices, and then discusses generalizedinverses of elements in rings and semigroups, as well as morphisms in categories. The algebraic nature of generalized inverses is presented, and the behavior of generalized inverses are related to the properti
Pindex Book 2024
The information of publication is updating

書目名稱Algebraic Theory of Generalized Inverses影響因子(影響力)




書目名稱Algebraic Theory of Generalized Inverses影響因子(影響力)學(xué)科排名




書目名稱Algebraic Theory of Generalized Inverses網(wǎng)絡(luò)公開度




書目名稱Algebraic Theory of Generalized Inverses網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Theory of Generalized Inverses被引頻次




書目名稱Algebraic Theory of Generalized Inverses被引頻次學(xué)科排名




書目名稱Algebraic Theory of Generalized Inverses年度引用




書目名稱Algebraic Theory of Generalized Inverses年度引用學(xué)科排名




書目名稱Algebraic Theory of Generalized Inverses讀者反饋




書目名稱Algebraic Theory of Generalized Inverses讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:45 | 只看該作者
Book 2024ce generalized inverses of complex matrices and operators and their related applications, or focus on generalized inverses of matrices over special rings like division rings and integral domains, and does not include the results in general algebraic structures such as arbitrary rings, semigroups and
板凳
發(fā)表于 2025-3-22 03:41:05 | 只看該作者
地板
發(fā)表于 2025-3-22 07:01:11 | 只看該作者
Book 2024es the basic properties of generalized inverses of matrices, and then discusses generalizedinverses of elements in rings and semigroups, as well as morphisms in categories. The algebraic nature of generalized inverses is presented, and the behavior of generalized inverses are related to the properti
5#
發(fā)表于 2025-3-22 10:09:55 | 只看該作者
6#
發(fā)表于 2025-3-22 15:16:09 | 只看該作者
7#
發(fā)表于 2025-3-22 19:01:15 | 只看該作者
Deformations of Algebraic SchemesIn this beginning chapter, we shall review some of the basic concepts and set up some notations for the subsequent chapters. The readers are assumed to be familiar with most of the basic knowledge on sets, groups, rings, fields and vector spaces.
8#
發(fā)表于 2025-3-22 23:40:46 | 只看該作者
9#
發(fā)表于 2025-3-23 03:13:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:00:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 06:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 临潭县| 西华县| 威海市| 合作市| 武胜县| 泸溪县| 渝中区| 图木舒克市| 正安县| 固原市| 措美县| 蒙山县| 吴川市| 修水县| 肇源县| 吉林省| 哈尔滨市| 临洮县| 峡江县| 桃园县| 防城港市| 乐都县| 乐清市| 黔江区| 延川县| 杭州市| 巴东县| 民勤县| 卓资县| 鹰潭市| 上杭县| 清丰县| 叙永县| 平安县| 玉林市| 杨浦区| 万年县| 大安市| 平泉县| 湟源县|