找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Theory of Generalized Inverses; Jianlong Chen,Xiaoxiang Zhang Book 2024 Science Press 2024 Algebraic equation.regularity.Moore—P

[復(fù)制鏈接]
樓主: incontestable
11#
發(fā)表于 2025-3-23 11:41:18 | 只看該作者
Local Properties of IntersectionIn the previous chapters, we introduced Moore-Penrose inverses, group inverses and Drazin inverses, which are the most well-known generalized inverses. Although these generalized inverses coincide in some special cases, they behave rather differently in general.
12#
發(fā)表于 2025-3-23 17:18:46 | 只看該作者
Deformations of Mathematical Structures IIFor any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
13#
發(fā)表于 2025-3-23 19:40:41 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:54 | 只看該作者
15#
發(fā)表于 2025-3-24 03:04:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:06:10 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:34 | 只看該作者
Pseudo Core Inverses,For any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
19#
發(fā)表于 2025-3-24 21:53:38 | 只看該作者
https://doi.org/10.1007/978-981-99-8285-1Algebraic equation; regularity; Moore—Penrose inverse,; Drazin inverse; group inverse; core inverse; pseud
20#
發(fā)表于 2025-3-25 00:59:58 | 只看該作者
Gerhardt Nissen,G?tz-Erik TrottFortschritt in der Wissenschaft zu neuen Probleml?sungen geführt, die eine naht-loseEinbettung von Rechen- und Kommunikationstechnologien in unsere All-tagswelt erm?glichen. Fl?chendeckende Infrastrukturen und spezialisierte Informationsger?te sind im Entstehen, was neue Anwendungsfelder der Informa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 06:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 鸡泽县| 丰原市| 阿拉善左旗| 桓仁| 建德市| 苏尼特右旗| 临桂县| 应城市| 吉安县| 澄迈县| 年辖:市辖区| 江西省| 西丰县| 新绛县| 邢台县| 旬邑县| 陇川县| 红安县| 抚顺县| 嘉义县| 济阳县| 峨山| 金堂县| 栖霞市| 中西区| 项城市| 乌海市| 巴南区| 凌源市| 龙门县| 清水河县| 荆门市| 岳普湖县| 荥阳市| 江门市| 景宁| 通渭县| 泾阳县| 永胜县| 承德县|