找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Theory of Generalized Inverses; Jianlong Chen,Xiaoxiang Zhang Book 2024 Science Press 2024 Algebraic equation.regularity.Moore—P

[復(fù)制鏈接]
樓主: incontestable
11#
發(fā)表于 2025-3-23 11:41:18 | 只看該作者
Local Properties of IntersectionIn the previous chapters, we introduced Moore-Penrose inverses, group inverses and Drazin inverses, which are the most well-known generalized inverses. Although these generalized inverses coincide in some special cases, they behave rather differently in general.
12#
發(fā)表于 2025-3-23 17:18:46 | 只看該作者
Deformations of Mathematical Structures IIFor any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
13#
發(fā)表于 2025-3-23 19:40:41 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:54 | 只看該作者
15#
發(fā)表于 2025-3-24 03:04:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:06:10 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:34 | 只看該作者
Pseudo Core Inverses,For any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
19#
發(fā)表于 2025-3-24 21:53:38 | 只看該作者
https://doi.org/10.1007/978-981-99-8285-1Algebraic equation; regularity; Moore—Penrose inverse,; Drazin inverse; group inverse; core inverse; pseud
20#
發(fā)表于 2025-3-25 00:59:58 | 只看該作者
Gerhardt Nissen,G?tz-Erik TrottFortschritt in der Wissenschaft zu neuen Probleml?sungen geführt, die eine naht-loseEinbettung von Rechen- und Kommunikationstechnologien in unsere All-tagswelt erm?glichen. Fl?chendeckende Infrastrukturen und spezialisierte Informationsger?te sind im Entstehen, was neue Anwendungsfelder der Informa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 22:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛川县| 舞钢市| 涞水县| 藁城市| 大安市| 昭苏县| 浮梁县| 行唐县| 肃宁县| 高要市| 阳朔县| 措勤县| 罗甸县| 普宁市| 浮山县| 漾濞| 东乌| 平果县| 汤阴县| 日喀则市| 伊宁市| 大兴区| 顺义区| 永城市| 台南市| 鄂托克前旗| 广昌县| 平度市| 普定县| 武山县| 离岛区| 尼木县| 英吉沙县| 望谟县| 孟州市| 五华县| 藁城市| 灵寿县| 合作市| 藁城市| 威远县|