找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Theory of Generalized Inverses; Jianlong Chen,Xiaoxiang Zhang Book 2024 Science Press 2024 Algebraic equation.regularity.Moore—P

[復(fù)制鏈接]
樓主: incontestable
11#
發(fā)表于 2025-3-23 11:41:18 | 只看該作者
Local Properties of IntersectionIn the previous chapters, we introduced Moore-Penrose inverses, group inverses and Drazin inverses, which are the most well-known generalized inverses. Although these generalized inverses coincide in some special cases, they behave rather differently in general.
12#
發(fā)表于 2025-3-23 17:18:46 | 只看該作者
Deformations of Mathematical Structures IIFor any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
13#
發(fā)表于 2025-3-23 19:40:41 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:54 | 只看該作者
15#
發(fā)表于 2025-3-24 03:04:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:06:10 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:34 | 只看該作者
Pseudo Core Inverses,For any square complex matrix . with index 1, we know that the core inverse of . exists and it is equal to .. For a square complex matrix . of an arbitrary index, by noting that the Drazin inverse . always exists, it is natural to consider the generalized inverse . so as to generalize the core inverse.
19#
發(fā)表于 2025-3-24 21:53:38 | 只看該作者
https://doi.org/10.1007/978-981-99-8285-1Algebraic equation; regularity; Moore—Penrose inverse,; Drazin inverse; group inverse; core inverse; pseud
20#
發(fā)表于 2025-3-25 00:59:58 | 只看該作者
Gerhardt Nissen,G?tz-Erik TrottFortschritt in der Wissenschaft zu neuen Probleml?sungen geführt, die eine naht-loseEinbettung von Rechen- und Kommunikationstechnologien in unsere All-tagswelt erm?glichen. Fl?chendeckende Infrastrukturen und spezialisierte Informationsger?te sind im Entstehen, was neue Anwendungsfelder der Informa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 22:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧水县| 临高县| 崇信县| 湘潭县| 龙泉市| 孝昌县| 东兴市| 德兴市| 新丰县| 彭泽县| 太仓市| 石狮市| 平定县| 巴楚县| 汨罗市| 青海省| 湘阴县| 沿河| 青川县| 吴桥县| 衡阳市| 浪卡子县| 安图县| 广州市| 小金县| 鄂托克旗| 绥德县| 娄烦县| 鄂托克旗| 莱州市| 宜都市| 定西市| 汾西县| 五寨县| 阿合奇县| 紫金县| 含山县| 霍山县| 阳原县| 莎车县| 宁津县|