找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti

[復制鏈接]
查看: 23298|回復: 58
樓主
發(fā)表于 2025-3-21 18:07:58 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebraic Aspects of Integrable Systems
期刊簡稱In Memory of Irene D
影響因子2023A. S. Fokas,I. M. Gelfand
視頻videohttp://file.papertrans.cn/153/152551/152551.mp4
學科分類Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti
Pindex Book 1997
The information of publication is updating

書目名稱Algebraic Aspects of Integrable Systems影響因子(影響力)




書目名稱Algebraic Aspects of Integrable Systems影響因子(影響力)學科排名




書目名稱Algebraic Aspects of Integrable Systems網絡公開度




書目名稱Algebraic Aspects of Integrable Systems網絡公開度學科排名




書目名稱Algebraic Aspects of Integrable Systems被引頻次




書目名稱Algebraic Aspects of Integrable Systems被引頻次學科排名




書目名稱Algebraic Aspects of Integrable Systems年度引用




書目名稱Algebraic Aspects of Integrable Systems年度引用學科排名




書目名稱Algebraic Aspects of Integrable Systems讀者反饋




書目名稱Algebraic Aspects of Integrable Systems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:51:05 | 只看該作者
Automorphic Pseudodifferential Operators,phic behaviour. In the simplest case, this correspondence is as follows. Let Γ be a discrete subgroup of ..(?) acting on the complex upper half-plane . in the usual way, and . a modular form of even weight . on Γ. Then there is a unique lifting from . to a Γ-invariant ΨDO with leading term .?., wher
板凳
發(fā)表于 2025-3-22 03:59:36 | 只看該作者
地板
發(fā)表于 2025-3-22 07:14:15 | 只看該作者
5#
發(fā)表于 2025-3-22 10:35:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:59 | 只看該作者
Compatibility in Abstract Algebraic Structures,the structure given by compatibility is bound to the situation of hamiltonian dynamic systems and how much of that can be transferred to a complete abstract situation where the algebraic structures under consideration are given by bilinear maps on some module over a commutative ring. Under suitable
7#
發(fā)表于 2025-3-22 20:24:31 | 只看該作者
A Theorem of Bochner, Revisited,s names of additional, master or conformal symmetries. They were discovered by Fokas, Fuchssteiner and Oevel [9], [10], [25], Chen, Lee and Lin [4] and Orlov and Schulman [26]. They are intimately related to the bihamiltonian nature of the equations of the theory of solitons which was pioneered in t
8#
發(fā)表于 2025-3-22 23:21:55 | 只看該作者
Obstacles to Asymptotic Integrability,and show that the analysis of the higher order terms provides a sufficient condition for asymptotic integrability of the original equation. The nonintegrable effects, which we call “obstacles” to the integrability, are shown to result in an inelasticity in soliton interaction. The main technique use
9#
發(fā)表于 2025-3-23 01:33:38 | 只看該作者
Infinitely-Precise Space-Time Discretizations of the Equation ut + uux = 0, of the Volterra system is preserved exactly. Since in the space-continuous limit the Volterra system turns into the basic nonlinear infinite-dimensional dynamical system .. + .. = 0, the Volterra conservation laws are discretizations of the conservation laws (../.). + [(../(.+1)] . = 0, . ∈ ..
10#
發(fā)表于 2025-3-23 07:15:33 | 只看該作者
Trace Formulas and the Canonical 1-Form,ted by pairs QP of smooth functions of period 1, equipped with the classical 1-form QdP = ∫. [.].. The introduction of canon- ically paired coordinates .... : . ∈ ?, as in Sections 2 and 6 below, suggests the identity . = Σ....., up to an additive exact form, and this may be verified, as in Sections
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 08:39
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
犍为县| 潜山县| 萨迦县| 壶关县| 理塘县| 定陶县| 邮箱| 阿拉善左旗| 光泽县| 蒙山县| 淮北市| 东安县| 郸城县| 江阴市| 綦江县| 渝中区| 卫辉市| 闽侯县| 淮滨县| 亚东县| 福海县| 双峰县| 张掖市| 肥西县| 东台市| 赣榆县| 镇宁| 都昌县| 鄂尔多斯市| 久治县| 石阡县| 嘉禾县| 衡山县| 陆河县| 鄢陵县| 洛阳市| 阜城县| 莎车县| 肇东市| 乐亭县| 西城区|