找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti

[復(fù)制鏈接]
樓主: T-Lymphocyte
11#
發(fā)表于 2025-3-23 11:52:05 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:19 | 只看該作者
13#
發(fā)表于 2025-3-23 18:58:31 | 只看該作者
,Multiscale Expansions, Symmetries and the Nonlinear Schr?dinger Hierarchy,ons, using a multitime expansion. In the case of pure radiation, we show that the asymptotic character of this expansion is guaranted by requiring that the modulation of the leading amplitude of the waves satisfy the nonlinear Schrodinger hierarchy of evolution equations with respect to the slow spa
14#
發(fā)表于 2025-3-23 23:04:08 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:58 | 只看該作者
https://doi.org/10.1007/3-7908-1670-1oes into the continuous one in a suitable asymptotic limit, together with integrals of motion and Poisson structure, or require that Poisson structure and integrals of motion be exactly preserved by the discretisation. Stationary or restricted flow technique typically lead to discretisation of the f
16#
發(fā)表于 2025-3-24 06:39:45 | 只看該作者
On the r-Matrix Structure of the Neumann System and its Discretizations,oes into the continuous one in a suitable asymptotic limit, together with integrals of motion and Poisson structure, or require that Poisson structure and integrals of motion be exactly preserved by the discretisation. Stationary or restricted flow technique typically lead to discretisation of the f
17#
發(fā)表于 2025-3-24 12:39:31 | 只看該作者
18#
發(fā)表于 2025-3-24 17:37:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:30 | 只看該作者
A Theorem of Bochner, Revisited,d Orlov and Schulman [26]. They are intimately related to the bihamiltonian nature of the equations of the theory of solitons which was pioneered in the work of Magri [23] and Gel’fand and Dorfman [11].
20#
發(fā)表于 2025-3-25 00:07:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽普县| 陆良县| 恩平市| 连云港市| 琼中| 台南市| 九龙县| 怀化市| 菏泽市| 扶余县| 勃利县| 平凉市| 平乐县| 吉安市| 敦煌市| 平阳县| 金沙县| 繁昌县| 高陵县| 婺源县| 武山县| 襄城县| 大洼县| 大余县| 揭西县| 康定县| 民乐县| 棋牌| 嘉荫县| 百色市| 皋兰县| 房山区| 锡林郭勒盟| 赣州市| 宝兴县| 忻州市| 吴川市| 高州市| 邵阳县| 陕西省| 江都市|