找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti

[復(fù)制鏈接]
樓主: T-Lymphocyte
11#
發(fā)表于 2025-3-23 11:52:05 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:19 | 只看該作者
13#
發(fā)表于 2025-3-23 18:58:31 | 只看該作者
,Multiscale Expansions, Symmetries and the Nonlinear Schr?dinger Hierarchy,ons, using a multitime expansion. In the case of pure radiation, we show that the asymptotic character of this expansion is guaranted by requiring that the modulation of the leading amplitude of the waves satisfy the nonlinear Schrodinger hierarchy of evolution equations with respect to the slow spa
14#
發(fā)表于 2025-3-23 23:04:08 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:58 | 只看該作者
https://doi.org/10.1007/3-7908-1670-1oes into the continuous one in a suitable asymptotic limit, together with integrals of motion and Poisson structure, or require that Poisson structure and integrals of motion be exactly preserved by the discretisation. Stationary or restricted flow technique typically lead to discretisation of the f
16#
發(fā)表于 2025-3-24 06:39:45 | 只看該作者
On the r-Matrix Structure of the Neumann System and its Discretizations,oes into the continuous one in a suitable asymptotic limit, together with integrals of motion and Poisson structure, or require that Poisson structure and integrals of motion be exactly preserved by the discretisation. Stationary or restricted flow technique typically lead to discretisation of the f
17#
發(fā)表于 2025-3-24 12:39:31 | 只看該作者
18#
發(fā)表于 2025-3-24 17:37:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:30 | 只看該作者
A Theorem of Bochner, Revisited,d Orlov and Schulman [26]. They are intimately related to the bihamiltonian nature of the equations of the theory of solitons which was pioneered in the work of Magri [23] and Gel’fand and Dorfman [11].
20#
發(fā)表于 2025-3-25 00:07:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 元阳县| 内乡县| 玉田县| 南乐县| 永靖县| 旅游| 拉萨市| 贵溪市| 米易县| 西乌| 海兴县| 韶山市| 景宁| 宁晋县| 汤原县| 灵武市| 玉龙| 孟村| 始兴县| 蒙山县| 西贡区| 阳原县| 通榆县| 漠河县| 沭阳县| 鄱阳县| 张家港市| 昌平区| 泾源县| 五莲县| 金华市| 长治县| 云浮市| 建阳市| 夏津县| 宣威市| 平阳县| 电白县| 涟源市| 花莲市|