找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Analysis of Differential Equations; from Microlocal Anal Takashi Aoki,Hideyuki Majima,Nobuyuki Tose Book 2008 Springer-Verlag Tok

[復(fù)制鏈接]
查看: 22171|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:07:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Analysis of Differential Equations
期刊簡(jiǎn)稱from Microlocal Anal
影響因子2023Takashi Aoki,Hideyuki Majima,Nobuyuki Tose
視頻videohttp://file.papertrans.cn/153/152544/152544.mp4
圖書(shū)封面Titlebook: Algebraic Analysis of Differential Equations; from Microlocal Anal Takashi Aoki,Hideyuki Majima,Nobuyuki Tose Book 2008 Springer-Verlag Tok
Pindex Book 2008
The information of publication is updating

書(shū)目名稱Algebraic Analysis of Differential Equations影響因子(影響力)




書(shū)目名稱Algebraic Analysis of Differential Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱Algebraic Analysis of Differential Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Algebraic Analysis of Differential Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Algebraic Analysis of Differential Equations被引頻次




書(shū)目名稱Algebraic Analysis of Differential Equations被引頻次學(xué)科排名




書(shū)目名稱Algebraic Analysis of Differential Equations年度引用




書(shū)目名稱Algebraic Analysis of Differential Equations年度引用學(xué)科排名




書(shū)目名稱Algebraic Analysis of Differential Equations讀者反饋




書(shū)目名稱Algebraic Analysis of Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:45:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:59:05 | 只看該作者
Virtual turning points — A gift of microlocal analysis to the exact WKB analysists importance in the analysis of the Noumi-Yamada system (a particular higher order Painlevé equation) and a concrete recipe for locating them. Examples given here make it manifest that virtual turning points are indispensable in WKB analysis of higher order linear ordinary differential equations wi
地板
發(fā)表于 2025-3-22 07:23:49 | 只看該作者
5#
發(fā)表于 2025-3-22 12:44:11 | 只看該作者
Nonlinear Stokes phenomena in first or second order differential equations 0 (say, . = (?1).). If . = 1 we assume .(0, ·) is meromorphic and nonlinear. If . = 2, we assume .(0, ·) is analytic except for isolated singularities, and also that ∫. |.(.)|..|.| < ∞ along some path avoiding the zeros and singularities of ., where .(.) = ∫..(0, .).. Let .. = {z: |.| > . > 0, arg(
6#
發(fā)表于 2025-3-22 14:15:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:30:22 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:12 | 只看該作者
9#
發(fā)表于 2025-3-23 05:06:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:07:46 | 只看該作者
https://doi.org/10.1007/978-3-319-06242-6the Borel transform of its asymptotic expansion, ., a nonlinear analog of Stokes phenomena. If . = 1 and . is a nonlinear polynomial with .(., 0) ? 0 a similar conclusion holds even if .(0, ·) is linear. This follows from the property that if . is superexponentially small along ?. and analytic in ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石楼县| 重庆市| 哈尔滨市| 淄博市| 大洼县| 青海省| 永吉县| 涡阳县| 托克逊县| 咸宁市| 平果县| 额济纳旗| 柯坪县| 收藏| 淄博市| 巴中市| 松阳县| 桑日县| 元氏县| 南丰县| 乌苏市| 开封县| 裕民县| 永平县| 图木舒克市| 平陆县| 陆河县| 大英县| 时尚| 昭通市| 张家川| 镇江市| 合肥市| 阿城市| 宁安市| 汝阳县| 仙居县| 金湖县| 梅河口市| 邹城市| 黄陵县|