找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Analysis of Differential Equations; from Microlocal Anal Takashi Aoki,Hideyuki Majima,Nobuyuki Tose Book 2008 Springer-Verlag Tok

[復(fù)制鏈接]
樓主: 外表
11#
發(fā)表于 2025-3-23 12:23:53 | 只看該作者
Ghost busting: Making sense of non-Hermitian Hamiltoniansy. The proof of unitarity requires the construction of a time-independent operator called .. In terms of . one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitar
12#
發(fā)表于 2025-3-23 14:02:41 | 只看該作者
13#
發(fā)表于 2025-3-23 21:22:06 | 只看該作者
https://doi.org/10.1007/978-4-431-73240-2Boundary value problem; Complex analysis; Microlocal analysis; Painlev/‘e equations; algebraic analysis;
14#
發(fā)表于 2025-3-24 00:42:20 | 只看該作者
15#
發(fā)表于 2025-3-24 03:01:58 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:56 | 只看該作者
17#
發(fā)表于 2025-3-24 13:34:04 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:30 | 只看該作者
Automated Debugging for Logic Bugsts importance in the analysis of the Noumi-Yamada system (a particular higher order Painlevé equation) and a concrete recipe for locating them. Examples given here make it manifest that virtual turning points are indispensable in WKB analysis of higher order linear ordinary differential equations wi
19#
發(fā)表于 2025-3-24 20:48:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:30 | 只看該作者
https://doi.org/10.1007/978-3-319-06242-6 0 (say, . = (?1).). If . = 1 we assume .(0, ·) is meromorphic and nonlinear. If . = 2, we assume .(0, ·) is analytic except for isolated singularities, and also that ∫. |.(.)|..|.| < ∞ along some path avoiding the zeros and singularities of ., where .(.) = ∫..(0, .).. Let .. = {z: |.| > . > 0, arg(
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴林右旗| 钦州市| 莱西市| 曲阜市| 克拉玛依市| 城市| 张家界市| 永川市| 揭阳市| 台湾省| 衡东县| 永善县| 曲沃县| 延吉市| 闽侯县| 蕲春县| 饶平县| 五莲县| 南城县| 句容市| 辽宁省| 塔城市| 奇台县| 琼结县| 施秉县| 鱼台县| 阳曲县| 萨嘎县| 虞城县| 亚东县| 诸暨市| 斗六市| 平果县| 科尔| 始兴县| 大理市| 车险| 建湖县| 阳朔县| 合水县| 讷河市|