找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Analysis of Differential Equations; from Microlocal Anal Takashi Aoki,Hideyuki Majima,Nobuyuki Tose Book 2008 Springer-Verlag Tok

[復制鏈接]
樓主: 外表
11#
發(fā)表于 2025-3-23 12:23:53 | 只看該作者
Ghost busting: Making sense of non-Hermitian Hamiltoniansy. The proof of unitarity requires the construction of a time-independent operator called .. In terms of . one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitar
12#
發(fā)表于 2025-3-23 14:02:41 | 只看該作者
13#
發(fā)表于 2025-3-23 21:22:06 | 只看該作者
https://doi.org/10.1007/978-4-431-73240-2Boundary value problem; Complex analysis; Microlocal analysis; Painlev/‘e equations; algebraic analysis;
14#
發(fā)表于 2025-3-24 00:42:20 | 只看該作者
15#
發(fā)表于 2025-3-24 03:01:58 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:56 | 只看該作者
17#
發(fā)表于 2025-3-24 13:34:04 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:30 | 只看該作者
Automated Debugging for Logic Bugsts importance in the analysis of the Noumi-Yamada system (a particular higher order Painlevé equation) and a concrete recipe for locating them. Examples given here make it manifest that virtual turning points are indispensable in WKB analysis of higher order linear ordinary differential equations wi
19#
發(fā)表于 2025-3-24 20:48:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:30 | 只看該作者
https://doi.org/10.1007/978-3-319-06242-6 0 (say, . = (?1).). If . = 1 we assume .(0, ·) is meromorphic and nonlinear. If . = 2, we assume .(0, ·) is analytic except for isolated singularities, and also that ∫. |.(.)|..|.| < ∞ along some path avoiding the zeros and singularities of ., where .(.) = ∫..(0, .).. Let .. = {z: |.| > . > 0, arg(
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泰宁县| 慈利县| 崇文区| 翼城县| 城口县| 高邮市| 安溪县| 宁化县| 大冶市| 南华县| 姚安县| 蕲春县| 灵宝市| 连江县| 正定县| 乳源| 浠水县| 万安县| 阿拉善右旗| 甘德县| 新龙县| 宜春市| 玉溪市| 阜南县| 泸西县| 衢州市| 塘沽区| 句容市| 淅川县| 金沙县| 额济纳旗| 元江| 漳平市| 建水县| 和静县| 汾西县| 沭阳县| 宝丰县| 大冶市| 兴宁市| 县级市|