找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 5th International Co Ying Tan,Yuhui Shi,Carlos A. Coello Coello Conference proceedings 2014 Springer Intern

[復(fù)制鏈接]
樓主: 召喚
11#
發(fā)表于 2025-3-23 10:50:35 | 只看該作者
Development on Harmony Search Hyper-heuristic Framework for Examination Timetabling Problem a combination of improvement heuristics which consist of neighborhood structure strategies. The proposed approach is tested using the examination timetabling tracks in Second International Timetabling Competition (ITC-2007) benchmarks. Experimentally, the HSHH approach can achieve comparable results with the comparative methods in the literature.
12#
發(fā)表于 2025-3-23 16:11:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:35:49 | 只看該作者
Parallel Bees Swarm Optimization for Association Rules Mining Using GPU Architecturelutions is parallelized. Experimental results reveal that the suggested method outperforms the sequential version at the order of ×70 in most data sets, furthermore, the WebDocs benchmark is handled with less than forty hours.
14#
發(fā)表于 2025-3-24 01:15:49 | 只看該作者
A Particle Swarm Optimization Based Pareto Optimal Task Scheduling in Cloud Computingnew variant of continuous Particle Swarm Optimization (PSO) algorithm, named Integer-PSO, is proposed to solve the bi-objective task scheduling problem in cloud which out performs the smallest position value (SPV) rule based PSO technique.
15#
發(fā)表于 2025-3-24 05:32:13 | 只看該作者
Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planningove global best properties and enhance the convergence speed. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO and particle swarm optimization (PSO) in solving UAV three-dimensional path planning problems.
16#
發(fā)表于 2025-3-24 10:23:38 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:17 | 只看該作者
18#
發(fā)表于 2025-3-24 15:24:35 | 只看該作者
Semi-supervised Ant Evolutionary Classificationon is carried out to maintain the history colony information as well as the scale of swarms. Theoretical analysis and experimental results show the effectiveness of our proposed model for evolutionary data classification.
19#
發(fā)表于 2025-3-24 21:36:13 | 只看該作者
A Novel Rough Set Reduct Algorithm to Feature Selection Based on Artificial Fish Swarm Algorithm genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO) and chaotic binary particle swarm optimization (CBPSO). Experiments demonstrate that the proposed algorithm could achieve the minimal reduct more efficiently than the other methods.
20#
發(fā)表于 2025-3-25 03:03:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 02:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼玛县| 丹江口市| 南雄市| 阿拉善盟| 英吉沙县| 牟定县| 兴业县| 巩义市| 咸阳市| 闵行区| 图木舒克市| 永福县| 吴旗县| 翼城县| 平陆县| 沈阳市| 乌拉特前旗| 东山县| 灌云县| 石门县| 邳州市| 鹤岗市| 华安县| 宝坻区| 南投市| 珠海市| 丰城市| 江门市| 兰西县| 宽城| 临沭县| 宁蒗| 三都| 尉氏县| 富川| 长岭县| 十堰市| 湟中县| 东明县| 惠东县| 伽师县|