找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 5th International Co Ying Tan,Yuhui Shi,Carlos A. Coello Coello Conference proceedings 2014 Springer Intern

[復(fù)制鏈接]
樓主: 召喚
21#
發(fā)表于 2025-3-25 03:43:07 | 只看該作者
22#
發(fā)表于 2025-3-25 09:20:09 | 只看該作者
Capacity and Power Optimization for Collaborative Beamforming with Two Relay Clustersonly one though a series of mathematical manipulation. Then apply genetic algorithm (GA) to obtain the optimal weight value of the nonconvex problems. Simulation results show that our proposed approaches significantly outperform the previous methods conducted.
23#
發(fā)表于 2025-3-25 14:59:13 | 只看該作者
Renin, sodium and hypertension,lutions is parallelized. Experimental results reveal that the suggested method outperforms the sequential version at the order of ×70 in most data sets, furthermore, the WebDocs benchmark is handled with less than forty hours.
24#
發(fā)表于 2025-3-25 18:28:45 | 只看該作者
25#
發(fā)表于 2025-3-25 20:01:05 | 只看該作者
26#
發(fā)表于 2025-3-26 01:55:14 | 只看該作者
27#
發(fā)表于 2025-3-26 05:36:17 | 只看該作者
Symmetries and Effective Vertices,ance and solution quality. The results may verify the effectiveness and promising application of the proposed method in solving the ED problem when we are considering both controllable and uncontrollable DG in power system.
28#
發(fā)表于 2025-3-26 10:36:42 | 只看該作者
G. S. Singhal,G. Renger,Govindjeeions results are compared with the results obtained using standard PBIL and another diversity increasing PBIL called herein as PBIL with Adapting learning rate (APBIL). It is shown that Parallel PBIL approach performs better than the standard PBIL and is as effective as APBIL.
29#
發(fā)表于 2025-3-26 15:10:14 | 只看該作者
G. S. Singhal,G. Renger,Govindjee time detect the anomaly of hydropower unit vibration parameters. The results show that this model can effectively evaluate the performance of unit vibration, can more accurately detect the abnormal of unit vibration.
30#
發(fā)表于 2025-3-26 19:41:38 | 只看該作者
Comparison of Multi-population PBIL and Adaptive Learning Rate PBIL in Designing Power System Controions results are compared with the results obtained using standard PBIL and another diversity increasing PBIL called herein as PBIL with Adapting learning rate (APBIL). It is shown that Parallel PBIL approach performs better than the standard PBIL and is as effective as APBIL.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 02:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳市| 宿迁市| 阿巴嘎旗| 平谷区| 阿勒泰市| 河津市| 平昌县| 廊坊市| 晋中市| 上杭县| 惠州市| 车致| 天峨县| 宁明县| 库车县| 江城| 喀喇| 古田县| 曲阳县| 永吉县| 济宁市| 平湖市| 许昌市| 泸水县| 鹿泉市| 竹溪县| 铜川市| 贵定县| 高碑店市| 鄄城县| 宝兴县| 叶城县| 山东| 茂名市| 西平县| 永兴县| 安塞县| 丰都县| 临高县| 分宜县| 新和县|