找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 5th International Co Ying Tan,Yuhui Shi,Carlos A. Coello Coello Conference proceedings 2014 Springer Intern

[復(fù)制鏈接]
樓主: 召喚
21#
發(fā)表于 2025-3-25 03:43:07 | 只看該作者
22#
發(fā)表于 2025-3-25 09:20:09 | 只看該作者
Capacity and Power Optimization for Collaborative Beamforming with Two Relay Clustersonly one though a series of mathematical manipulation. Then apply genetic algorithm (GA) to obtain the optimal weight value of the nonconvex problems. Simulation results show that our proposed approaches significantly outperform the previous methods conducted.
23#
發(fā)表于 2025-3-25 14:59:13 | 只看該作者
Renin, sodium and hypertension,lutions is parallelized. Experimental results reveal that the suggested method outperforms the sequential version at the order of ×70 in most data sets, furthermore, the WebDocs benchmark is handled with less than forty hours.
24#
發(fā)表于 2025-3-25 18:28:45 | 只看該作者
25#
發(fā)表于 2025-3-25 20:01:05 | 只看該作者
26#
發(fā)表于 2025-3-26 01:55:14 | 只看該作者
27#
發(fā)表于 2025-3-26 05:36:17 | 只看該作者
Symmetries and Effective Vertices,ance and solution quality. The results may verify the effectiveness and promising application of the proposed method in solving the ED problem when we are considering both controllable and uncontrollable DG in power system.
28#
發(fā)表于 2025-3-26 10:36:42 | 只看該作者
G. S. Singhal,G. Renger,Govindjeeions results are compared with the results obtained using standard PBIL and another diversity increasing PBIL called herein as PBIL with Adapting learning rate (APBIL). It is shown that Parallel PBIL approach performs better than the standard PBIL and is as effective as APBIL.
29#
發(fā)表于 2025-3-26 15:10:14 | 只看該作者
G. S. Singhal,G. Renger,Govindjee time detect the anomaly of hydropower unit vibration parameters. The results show that this model can effectively evaluate the performance of unit vibration, can more accurately detect the abnormal of unit vibration.
30#
發(fā)表于 2025-3-26 19:41:38 | 只看該作者
Comparison of Multi-population PBIL and Adaptive Learning Rate PBIL in Designing Power System Controions results are compared with the results obtained using standard PBIL and another diversity increasing PBIL called herein as PBIL with Adapting learning rate (APBIL). It is shown that Parallel PBIL approach performs better than the standard PBIL and is as effective as APBIL.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上高县| 启东市| 乐业县| 九龙县| 涞水县| 河曲县| 江城| 嘉义县| 乐东| 永川市| 清涧县| 岐山县| 乐业县| 安宁市| 商丘市| 虹口区| 平罗县| 梁平县| 榆林市| 民权县| 阆中市| 闵行区| 莒南县| 沧源| 威宁| 衡山县| 南和县| 登封市| 定州市| 临猗县| 内黄县| 江阴市| 彭州市| 遂宁市| 昌图县| 大悟县| 石屏县| 九台市| 屏东市| 洪湖市| 桐梓县|