找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 5th International Co Ying Tan,Yuhui Shi,Carlos A. Coello Coello Conference proceedings 2014 Springer Intern

[復(fù)制鏈接]
樓主: 召喚
11#
發(fā)表于 2025-3-23 10:50:35 | 只看該作者
Development on Harmony Search Hyper-heuristic Framework for Examination Timetabling Problem a combination of improvement heuristics which consist of neighborhood structure strategies. The proposed approach is tested using the examination timetabling tracks in Second International Timetabling Competition (ITC-2007) benchmarks. Experimentally, the HSHH approach can achieve comparable results with the comparative methods in the literature.
12#
發(fā)表于 2025-3-23 16:11:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:35:49 | 只看該作者
Parallel Bees Swarm Optimization for Association Rules Mining Using GPU Architecturelutions is parallelized. Experimental results reveal that the suggested method outperforms the sequential version at the order of ×70 in most data sets, furthermore, the WebDocs benchmark is handled with less than forty hours.
14#
發(fā)表于 2025-3-24 01:15:49 | 只看該作者
A Particle Swarm Optimization Based Pareto Optimal Task Scheduling in Cloud Computingnew variant of continuous Particle Swarm Optimization (PSO) algorithm, named Integer-PSO, is proposed to solve the bi-objective task scheduling problem in cloud which out performs the smallest position value (SPV) rule based PSO technique.
15#
發(fā)表于 2025-3-24 05:32:13 | 只看該作者
Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planningove global best properties and enhance the convergence speed. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO and particle swarm optimization (PSO) in solving UAV three-dimensional path planning problems.
16#
發(fā)表于 2025-3-24 10:23:38 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:17 | 只看該作者
18#
發(fā)表于 2025-3-24 15:24:35 | 只看該作者
Semi-supervised Ant Evolutionary Classificationon is carried out to maintain the history colony information as well as the scale of swarms. Theoretical analysis and experimental results show the effectiveness of our proposed model for evolutionary data classification.
19#
發(fā)表于 2025-3-24 21:36:13 | 只看該作者
A Novel Rough Set Reduct Algorithm to Feature Selection Based on Artificial Fish Swarm Algorithm genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO) and chaotic binary particle swarm optimization (CBPSO). Experiments demonstrate that the proposed algorithm could achieve the minimal reduct more efficiently than the other methods.
20#
發(fā)表于 2025-3-25 03:03:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 00:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漳平市| 崇礼县| 桓仁| 安陆市| 海原县| 承德市| 龙州县| 于田县| 信丰县| 刚察县| 渝北区| 仁化县| 苏尼特左旗| 吉木萨尔县| 石狮市| 阿瓦提县| 会泽县| 龙泉市| 广东省| 车致| 浦城县| 乐清市| 旺苍县| 曲麻莱县| 吉木乃县| 伊宁县| 茂名市| 广元市| 北川| 延寿县| 宁波市| 定陶县| 三都| 广东省| 新沂市| 宁远县| 岳阳县| 紫金县| 江陵县| 田林县| 临武县|