找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Harmonic Analysis and Partial Differential Equations; Vladimir Georgiev,Tohru Ozawa,Jens Wirth Conference proceedings 2020 Spr

[復(fù)制鏈接]
樓主: 愚蠢地活
31#
發(fā)表于 2025-3-26 21:18:45 | 只看該作者
Nilam Sinha,Eoin C. Whelan,Ralph L. BrinsterIn this paper we present an approach to growth estimates of generalized eigenfunctions for exterior magnetic Schr?dinger operators with exploding and oscillating long-range potentials. Also we apply them to show the principle of limiting absorption.
32#
發(fā)表于 2025-3-27 04:47:01 | 只看該作者
33#
發(fā)表于 2025-3-27 06:43:42 | 只看該作者
https://doi.org/10.1007/978-4-431-55766-1ocal smoothing estimate of Mockenhaupt, Seeger and Sogge, and is a global result with respect to the space variable. The novelty in our approach is the use of harmonic analysis of Hermite functions in the study of Fourier integral operators.
34#
發(fā)表于 2025-3-27 10:34:20 | 只看該作者
35#
發(fā)表于 2025-3-27 14:57:40 | 只看該作者
Chillen als jugendkulturelle Praxis. Birk?user, Boston, 2016) on certain Gelfand triples for homogeneous Lie groups .. Even for the Heisenberg group . there seems to be no simple intrinsic characterization for the Fourier image of the Schwartz space of rapidly decreasing smooth functions ., see (Geller, J Funct Anal 36(2), 205–254, 1
36#
發(fā)表于 2025-3-27 21:49:57 | 只看該作者
37#
發(fā)表于 2025-3-27 22:37:48 | 只看該作者
38#
發(fā)表于 2025-3-28 04:42:15 | 只看該作者
Chimera Patterns in Complex Networks,sedness and scattering of radial solutions under scaling, variational, and rigidity assumptions for .. We also provide sharp finite time blowup results for nonradial and radial solutions. For this we utilize the localized virial identity.
39#
發(fā)表于 2025-3-28 06:16:49 | 只看該作者
https://doi.org/10.1007/978-3-030-21714-3the critical order. In Masaki and the first author (Differ Integr Equ 32(3–4):121–138, 2019), they obtain the upper bound of the lifespan of solutions to our equation via a test function method introduced by Zhang (Duke Math J 97(3):515–539, 1999; C R Acad Sci Paris Sér I Math 333(2):109–114, 2001).
40#
發(fā)表于 2025-3-28 10:34:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 09:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄城县| 海南省| 增城市| 古蔺县| 盐亭县| 屯留县| 浦江县| 东乡族自治县| 会理县| 佛山市| 彭山县| 宁明县| 蒙山县| 光山县| 东山县| 浦江县| 西贡区| 左贡县| 兴宁市| 乌拉特前旗| 牟定县| 周至县| 开阳县| 沂南县| 遵化市| 偃师市| 平果县| 娱乐| 绥宁县| 卢湾区| 文昌市| 崇义县| 西宁市| 临漳县| 法库县| 徐汇区| 包头市| 宁武县| 塔河县| 东山县| 闻喜县|