找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Harmonic Analysis and Partial Differential Equations; Vladimir Georgiev,Tohru Ozawa,Jens Wirth Conference proceedings 2020 Spr

[復(fù)制鏈接]
樓主: 愚蠢地活
21#
發(fā)表于 2025-3-25 07:23:22 | 只看該作者
,Simple Proof of the Estimate of Solutions to Schr?dinger Equations with Linear and Sub-linear Poten our attention to how Woolf used short fictional forms to achieve her most sustained exploration of the human relation to the external world, as she found the genre at once sufficiently capacious and circumscribed to accommodate the nonhuman presence in narrative.
22#
發(fā)表于 2025-3-25 10:37:46 | 只看該作者
23#
發(fā)表于 2025-3-25 11:40:03 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:57 | 只看該作者
Vladimir Georgiev,Tohru Ozawa,Jens WirthProvides original contributions from leading experts.Focusses on the interaction of different fields.Allows expert researchers as well as postgraduate students to grasp new ideas
25#
發(fā)表于 2025-3-25 23:29:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:34:49 | 只看該作者
Advances in Harmonic Analysis and Partial Differential Equations978-3-030-58215-9Series ISSN 2297-0215 Series E-ISSN 2297-024X
27#
發(fā)表于 2025-3-26 05:04:33 | 只看該作者
https://doi.org/10.1007/978-4-431-55766-1ocal smoothing estimate of Mockenhaupt, Seeger and Sogge, and is a global result with respect to the space variable. The novelty in our approach is the use of harmonic analysis of Hermite functions in the study of Fourier integral operators.
28#
發(fā)表于 2025-3-26 12:13:42 | 只看該作者
29#
發(fā)表于 2025-3-26 16:33:24 | 只看該作者
https://doi.org/10.1007/978-3-319-91983-6ical Sobolev exponent in this context, Ω is a bounded domain of . and . is small in a suitable sense. Precisely, we prove the existence of two distinct solutions, that are positive if . is. We adapt to the present subelliptic setting the well-known technique developed by Tarantello (Ann Inst H Poincarè Anal Non Linéaire 9:281–309, 1992).
30#
發(fā)表于 2025-3-26 16:55:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 09:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秭归县| 固镇县| 手游| 仪陇县| 牟定县| 克什克腾旗| 尉氏县| 甘谷县| 沅江市| 民乐县| 通江县| 遵义县| 荆门市| 抚远县| 富锦市| 裕民县| 定西市| 沙坪坝区| 仙游县| 三明市| 台湾省| 伊通| 射洪县| 木兰县| 衡东县| 瓦房店市| 旬阳县| 永德县| 淮南市| 阳朔县| 乌审旗| 台江县| 漾濞| 湖口县| 宝鸡市| 阿克| 安泽县| 崇礼县| 靖江市| 蒲江县| 卓资县|