找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Harmonic Analysis and Partial Differential Equations; Vladimir Georgiev,Tohru Ozawa,Jens Wirth Conference proceedings 2020 Spr

[復(fù)制鏈接]
查看: 37899|回復(fù): 50
樓主
發(fā)表于 2025-3-21 18:02:18 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Harmonic Analysis and Partial Differential Equations
影響因子2023Vladimir Georgiev,Tohru Ozawa,Jens Wirth
視頻videohttp://file.papertrans.cn/149/148177/148177.mp4
發(fā)行地址Provides original contributions from leading experts.Focusses on the interaction of different fields.Allows expert researchers as well as postgraduate students to grasp new ideas
學(xué)科分類Trends in Mathematics
圖書封面Titlebook: Advances in Harmonic Analysis and Partial Differential Equations;  Vladimir Georgiev,Tohru Ozawa,Jens Wirth Conference proceedings 2020 Spr
影響因子This book?originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and.?.provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers.?. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area..
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Advances in Harmonic Analysis and Partial Differential Equations影響因子(影響力)




書目名稱Advances in Harmonic Analysis and Partial Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Advances in Harmonic Analysis and Partial Differential Equations網(wǎng)絡(luò)公開度




書目名稱Advances in Harmonic Analysis and Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Harmonic Analysis and Partial Differential Equations被引頻次




書目名稱Advances in Harmonic Analysis and Partial Differential Equations被引頻次學(xué)科排名




書目名稱Advances in Harmonic Analysis and Partial Differential Equations年度引用




書目名稱Advances in Harmonic Analysis and Partial Differential Equations年度引用學(xué)科排名




書目名稱Advances in Harmonic Analysis and Partial Differential Equations讀者反饋




書目名稱Advances in Harmonic Analysis and Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:33:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:36 | 只看該作者
Conference proceedings 2020earch areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area..
地板
發(fā)表于 2025-3-22 06:14:58 | 只看該作者
5#
發(fā)表于 2025-3-22 11:01:26 | 只看該作者
6#
發(fā)表于 2025-3-22 14:52:13 | 只看該作者
https://doi.org/10.1007/978-3-319-91983-6he group in view of the Peter–Weyl Theorem and the Ruzhansky–Turunen symbolic calculus. The analysis of invariant pseudo-differential operators on compact manifolds with boundary will be based on the global calculus of pseudo-differential operators developed by Ruzhansky and Tokmagambetov.
7#
發(fā)表于 2025-3-22 17:06:54 | 只看該作者
https://doi.org/10.1007/978-3-030-21714-3ting term corresponds to the ..-scaling critical. In this paper, it turns out that the upper bound can be refined by employing a unified test function by Ikeda and the second author (Nonlinear Anal 182:57–74, 2019).
8#
發(fā)表于 2025-3-22 22:43:27 | 只看該作者
Local Smoothing of Fourier Integral Operators and Hermite Functions, einen kurzen Verweis auf eine ?u?erst erfolgreiche Anwendung der relationalen Perspektive für die Erforschung des Ged?chtnisses kognitiver Systeme (neuronale Netze), die auch eine gewisse Anschlussf?higkeit an systemtheoretische Fragestellungen bietet.
9#
發(fā)表于 2025-3-23 01:57:21 | 只看該作者
10#
發(fā)表于 2025-3-23 07:26:35 | 只看該作者
,Lifespan of Solutions to Nonlinear Schr?dinger Equations with General Homogeneous Nonlinearity of ta sophisticated surgical intervention. The trepanations of the primitive cultures are already over. The spread of modern Western civilisation and uses in all corners of the world make it virtually impossible for it to continue its practice in any contemporary culture.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 20:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱芜市| 九龙城区| 缙云县| 清涧县| 博罗县| 岳西县| 吉林省| 永登县| 兴海县| 仁寿县| 玉树县| 武隆县| 湘潭县| 平顶山市| 大方县| 隆德县| 高尔夫| 托克逊县| 张掖市| 苗栗市| 镇原县| 文成县| 新沂市| 临猗县| 沿河| 杭州市| 迁安市| 新宾| 克什克腾旗| 城固县| 蒙阴县| 德江县| 迁安市| 福清市| 道孚县| 曲麻莱县| 深水埗区| 柏乡县| 隆化县| 盘山县| 剑阁县|