找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Harmonic Analysis and Partial Differential Equations; Vladimir Georgiev,Tohru Ozawa,Jens Wirth Conference proceedings 2020 Spr

[復制鏈接]
樓主: 愚蠢地活
21#
發(fā)表于 2025-3-25 07:23:22 | 只看該作者
,Simple Proof of the Estimate of Solutions to Schr?dinger Equations with Linear and Sub-linear Poten our attention to how Woolf used short fictional forms to achieve her most sustained exploration of the human relation to the external world, as she found the genre at once sufficiently capacious and circumscribed to accommodate the nonhuman presence in narrative.
22#
發(fā)表于 2025-3-25 10:37:46 | 只看該作者
23#
發(fā)表于 2025-3-25 11:40:03 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:57 | 只看該作者
Vladimir Georgiev,Tohru Ozawa,Jens WirthProvides original contributions from leading experts.Focusses on the interaction of different fields.Allows expert researchers as well as postgraduate students to grasp new ideas
25#
發(fā)表于 2025-3-25 23:29:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:34:49 | 只看該作者
Advances in Harmonic Analysis and Partial Differential Equations978-3-030-58215-9Series ISSN 2297-0215 Series E-ISSN 2297-024X
27#
發(fā)表于 2025-3-26 05:04:33 | 只看該作者
https://doi.org/10.1007/978-4-431-55766-1ocal smoothing estimate of Mockenhaupt, Seeger and Sogge, and is a global result with respect to the space variable. The novelty in our approach is the use of harmonic analysis of Hermite functions in the study of Fourier integral operators.
28#
發(fā)表于 2025-3-26 12:13:42 | 只看該作者
29#
發(fā)表于 2025-3-26 16:33:24 | 只看該作者
https://doi.org/10.1007/978-3-319-91983-6ical Sobolev exponent in this context, Ω is a bounded domain of . and . is small in a suitable sense. Precisely, we prove the existence of two distinct solutions, that are positive if . is. We adapt to the present subelliptic setting the well-known technique developed by Tarantello (Ann Inst H Poincarè Anal Non Linéaire 9:281–309, 1992).
30#
發(fā)表于 2025-3-26 16:55:31 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-29 20:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
祁东县| 婺源县| 富平县| 阳春市| 鄂尔多斯市| 莲花县| 吉隆县| 阳谷县| 沾化县| 万全县| 沈丘县| 平邑县| 九台市| 白城市| 杭锦旗| 镇原县| 包头市| 宜川县| 富平县| 富锦市| 雷山县| 兰西县| 商城县| 鄂托克前旗| 台北市| 枞阳县| 韶山市| 沙田区| 武城县| 商河县| 竹山县| 郑州市| 淮滨县| 沈丘县| 都昌县| 沛县| 黄浦区| 曲麻莱县| 花莲市| 紫金县| 庐江县|