找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Boundary Element Methods; Proceedings of the I Thomas A. Cruse Conference proceedings 1988 Springer-Verlag, Berlin, Heidelberg 198

[復(fù)制鏈接]
樓主: 叛亂分子
51#
發(fā)表于 2025-3-30 10:46:30 | 只看該作者
52#
發(fā)表于 2025-3-30 16:18:08 | 只看該作者
53#
發(fā)表于 2025-3-30 18:58:30 | 只看該作者
54#
發(fā)表于 2025-3-30 23:56:27 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0internal points is described. This procedure delivers the pattern of stress and displacement as far as the boundary and does not require the use of kernel derivatives. Numerical results for sample problems are reported.
55#
發(fā)表于 2025-3-31 03:01:10 | 只看該作者
Kenji Nanba,Alexei Konoplev,Toshihiro Wada the Overhauser element, is described, including its degenerate forms which allow it to be applied to bodies, such as cubes, which are not themselves C 1 continuous. Such an element provides an alternative to the use of splines but still uses only nodal values. Results are given of its application to two elastostatic problems.
56#
發(fā)表于 2025-3-31 07:37:25 | 只看該作者
Melbourne R. Carriker,Dirk Van Zandte discontinuity of the displacement across the crack. A significant feature of the present method, which may be different from the conventional boundary element analyses, is that the elements are not introduced to the surface of the cavity but only to the crack surfaces.
57#
發(fā)表于 2025-3-31 12:23:58 | 只看該作者
58#
發(fā)表于 2025-3-31 16:23:33 | 只看該作者
59#
發(fā)表于 2025-3-31 20:52:50 | 只看該作者
Kenji Nanba,Shota Moritaka,Yasunori Igarashiical examples, the generation of meshes, singular integration, traction discontinuity, concentrated loading and so on are given. An interesting numerical comparison of the BEM solution to that of FEM is obtained to show that the BEM is better than the FEM for this kind of problem.
60#
發(fā)表于 2025-4-1 01:42:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔江区| 澎湖县| 元阳县| 如东县| 阿克苏市| 湘潭市| 北辰区| 元谋县| 诸城市| 阳新县| 灌云县| 海城市| 双江| 拉萨市| 吉隆县| 石台县| 象山县| 固阳县| 临湘市| 文登市| 抚州市| 阜南县| 青铜峡市| 收藏| 电白县| 临江市| 屯昌县| 枞阳县| 改则县| 鸡东县| 荣昌县| 喀什市| 乐清市| 饶平县| 军事| 鄂伦春自治旗| 昆山市| 临朐县| 长丰县| 济宁市| 常宁市|