找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Boundary Element Methods; Proceedings of the I Thomas A. Cruse Conference proceedings 1988 Springer-Verlag, Berlin, Heidelberg 198

[復(fù)制鏈接]
樓主: 叛亂分子
41#
發(fā)表于 2025-3-28 16:49:02 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0aviour of the component at each step of the algorithm. This method prooved to be very efficient and in now applied to three dimensional structures using the Boundary Element method as analysis tool. The principle of the shape optimization method is to repeatedly modify the shape of the structure acc
42#
發(fā)表于 2025-3-28 19:56:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:11:51 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0s -- we present a combined approach with finite elements and boundary elements. The given method is based on a general variational principle which renders all boundary conditions on the interface manifold Γ to be natural and also allows inhomogeneous material for the scatterer given here by a bounde
44#
發(fā)表于 2025-3-29 03:52:25 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:41 | 只看該作者
Kenji Nanba,Alexei Konoplev,Toshihiro Wadar kernels encountered in a collocation procedure and secondly, the interpolation of the unknown functions over the element surface and the interpolation of the element surface itself..For kernel integration, some results are presented which combine the method of singularity subtraction and Taylor ex
46#
發(fā)表于 2025-3-29 14:55:11 | 只看該作者
Kenji Nanba,Shota Moritaka,Yasunori Igarashior convergence computation of a classic 3D shell problem (a ring with circular cross-section under concentrated loading) solved by using BEM is presented. Some numerical analysis experience in 30 BEM with isoparametric element has also been summarized in this paper. By way of a great number of numer
47#
發(fā)表于 2025-3-29 15:51:17 | 只看該作者
48#
發(fā)表于 2025-3-29 21:55:52 | 只看該作者
49#
發(fā)表于 2025-3-30 00:58:11 | 只看該作者
50#
發(fā)表于 2025-3-30 05:37:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿合奇县| 英德市| 文昌市| 玉屏| 齐河县| 威宁| 常州市| 宁安市| 伊宁市| 曲沃县| 尖扎县| 扎鲁特旗| 兰西县| 阳曲县| 霸州市| 攀枝花市| 苏尼特左旗| 高阳县| 张家口市| 新郑市| 鹤岗市| 沐川县| 绍兴市| 沾益县| 方城县| 克拉玛依市| 曲周县| 连江县| 禄丰县| 寿阳县| 滕州市| 宁晋县| 井陉县| 鲜城| 新巴尔虎右旗| 卢湾区| 慈溪市| 钟祥市| 绍兴市| 金湖县| 台州市|