找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Boundary Element Methods; Proceedings of the I Thomas A. Cruse Conference proceedings 1988 Springer-Verlag, Berlin, Heidelberg 198

[復(fù)制鏈接]
樓主: 叛亂分子
41#
發(fā)表于 2025-3-28 16:49:02 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0aviour of the component at each step of the algorithm. This method prooved to be very efficient and in now applied to three dimensional structures using the Boundary Element method as analysis tool. The principle of the shape optimization method is to repeatedly modify the shape of the structure acc
42#
發(fā)表于 2025-3-28 19:56:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:11:51 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0s -- we present a combined approach with finite elements and boundary elements. The given method is based on a general variational principle which renders all boundary conditions on the interface manifold Γ to be natural and also allows inhomogeneous material for the scatterer given here by a bounde
44#
發(fā)表于 2025-3-29 03:52:25 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:41 | 只看該作者
Kenji Nanba,Alexei Konoplev,Toshihiro Wadar kernels encountered in a collocation procedure and secondly, the interpolation of the unknown functions over the element surface and the interpolation of the element surface itself..For kernel integration, some results are presented which combine the method of singularity subtraction and Taylor ex
46#
發(fā)表于 2025-3-29 14:55:11 | 只看該作者
Kenji Nanba,Shota Moritaka,Yasunori Igarashior convergence computation of a classic 3D shell problem (a ring with circular cross-section under concentrated loading) solved by using BEM is presented. Some numerical analysis experience in 30 BEM with isoparametric element has also been summarized in this paper. By way of a great number of numer
47#
發(fā)表于 2025-3-29 15:51:17 | 只看該作者
48#
發(fā)表于 2025-3-29 21:55:52 | 只看該作者
49#
發(fā)表于 2025-3-30 00:58:11 | 只看該作者
50#
發(fā)表于 2025-3-30 05:37:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
门源| 澎湖县| 德钦县| 卢氏县| 渑池县| 江山市| 竹溪县| 大港区| 博湖县| 淳安县| 西乌珠穆沁旗| 望江县| 晴隆县| 出国| 郎溪县| 巴塘县| 佛学| 兰溪市| 清原| 敦化市| 曲麻莱县| 武平县| 安福县| 儋州市| 陇南市| 扎鲁特旗| 云霄县| 盐源县| 嘉黎县| 天峨县| 沙坪坝区| 石屏县| 海口市| 修文县| 遵化市| 车险| 若尔盖县| 祁阳县| 沙洋县| 邵东县| 新干县|