找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering; G. Hariharan Book 2019 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Osteopenia
41#
發(fā)表于 2025-3-28 15:19:27 | 只看該作者
42#
發(fā)表于 2025-3-28 19:10:41 | 只看該作者
Haar Wavelet Method for Solving Some Nonlinear Parabolic Equations,ficient Haar transform or Haar wavelet method for some of the well-known nonlinear parabolic partial differential equations. The equations include the Newell–Whitehead equation, Cahn–Allen equation, FitzHugh–Nagumo equation, Fisher’s equation, Burgers’ equation, and the Burgers–Fisher equation. The
43#
發(fā)表于 2025-3-29 00:36:30 | 只看該作者
An Efficient Wavelet-Based Approximation Method to Gene Propagation Model Arising in Population Bioing in biological sciences. To the best of our knowledge, until now there is no rigorous wavelet solution has been addressed for Fisher’s and fractional Fisher’s equations. The highest derivative in the differential equation is expanded into Legendre series, and this approximation is integrated whil
44#
發(fā)表于 2025-3-29 06:35:57 | 只看該作者
45#
發(fā)表于 2025-3-29 08:09:18 | 只看該作者
46#
發(fā)表于 2025-3-29 12:58:29 | 只看該作者
Wavelet-Based Analytical Expressions to Steady-State Biofilm Model Arising in Biochemical Engineeribyshev wavelet-based approximation method is successfully introduced in solving nonlinear steady-state biofilm reaction model. Analytical solutions for substrate concentration have been derived for all values of the parameters . and .. The power of the manageable method is confirmed. Some numerical
47#
發(fā)表于 2025-3-29 18:57:21 | 只看該作者
48#
發(fā)表于 2025-3-29 19:58:44 | 只看該作者
Analytical Expressions of Amperometric Enzyme Kinetics Pertaining to the Substrate Concentration Us problems. The operational matrices of derivatives have been utilized for solving the nonlinear initial value problems. The accuracy of the proposed wavelet-based approximation methods has been confirmed. The main purpose of the proposed method is to get better and more accurate results. Operational
49#
發(fā)表于 2025-3-30 00:51:45 | 只看該作者
Haar Wavelet Method for Solving Some Nonlinear Parabolic Equations,ficient Haar transform or Haar wavelet method for some of the well-known nonlinear parabolic partial differential equations. The equations include the Newell–Whitehead equation, Cahn–Allen equation, FitzHugh–Nagumo equation, Fisher’s equation, Burgers’ equation, and the Burgers–Fisher equation. The
50#
發(fā)表于 2025-3-30 08:04:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东城区| 辽源市| 信宜市| 手游| 和平区| 江西省| 玛曲县| 定日县| 峡江县| 香港 | 静安区| 和平县| 沭阳县| 任丘市| 黔江区| 汝南县| 冀州市| 英超| 许昌县| 威海市| 北流市| 河北省| 扬中市| 都昌县| 沁源县| 宣武区| 云和县| 靖远县| 赤城县| 淳安县| 辽阳市| 余庆县| 香河县| 诸城市| 惠州市| 新兴县| 金川县| 防城港市| 南丹县| 汝城县| 兰考县|