找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering; G. Hariharan Book 2019 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Osteopenia
51#
發(fā)表于 2025-3-30 08:57:07 | 只看該作者
,Two Reliable Wavelet Methods to Fitzhugh–Nagumo (FN) and Fractional FN Equations,n this paper, we have developed the wavelet methods to find the approximate solutions for the Fitzhugh–Nagumo (FN) and fractional FN equations. The proposed method techniques provide the solutions in rapid convergence series with computable terms.
52#
發(fā)表于 2025-3-30 16:23:56 | 只看該作者
53#
發(fā)表于 2025-3-30 16:35:49 | 只看該作者
Wavelet-Based Analytical Expressions to Steady-State Biofilm Model Arising in Biochemical Engineeribyshev wavelet-based approximation method is successfully introduced in solving nonlinear steady-state biofilm reaction model. Analytical solutions for substrate concentration have been derived for all values of the parameters . and .. The power of the manageable method is confirmed. Some numerical
54#
發(fā)表于 2025-3-31 00:19:13 | 只看該作者
Book 2019r differential equations that arise when modelling real physical phenomena. It explores the analytical and numerical approximate solutions obtained by wavelet methods for both classical and fractional-order differential equations; provides comprehensive information on the conceptual basis of wavelet
55#
發(fā)表于 2025-3-31 00:55:06 | 只看該作者
56#
發(fā)表于 2025-3-31 07:47:58 | 只看該作者
,A New Coupled Wavelet-Based Method Applied to the Nonlinear Reaction–Diffusion Equation Arising in numerical example to demonstrate the validity and applicability of the method. Moreover, the use of proposed wavelet-based coupled method is found to be simple, efficient, less computation costs, and computationally attractive.
57#
發(fā)表于 2025-3-31 12:23:50 | 只看該作者
An Efficient Wavelet-Based Spectral Method to Singular Boundary Value Problems,rted into a system of algebraic equations. The convergence of the proposed method is established. The power of the manageable method is confirmed. Finally, we have given some numerical examples to demonstrate the validity and applicability of the proposed wavelet method.
58#
發(fā)表于 2025-3-31 14:30:44 | 只看該作者
59#
發(fā)表于 2025-3-31 19:50:51 | 只看該作者
Haar Wavelet Method for Solving Some Nonlinear Parabolic Equations,proposed scheme can be used to a wide class of nonlinear equations. The power of this manageable method is confirmed. Moreover, the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs, and computationally attractive.
60#
發(fā)表于 2025-4-1 01:29:32 | 只看該作者
Wavelet-Based Analytical Expressions to Steady-State Biofilm Model Arising in Biochemical Engineeriexamples are presented to demonstrate the validity and applicability of the wavelet method. Moreover, the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs, and computationally attractive.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
重庆市| 萨嘎县| 台前县| 巴南区| 济源市| 安陆市| 平顺县| 吕梁市| 泊头市| 崇礼县| 西充县| 寿阳县| 宿松县| 遵义市| 洪雅县| 莱阳市| 丹东市| 万盛区| 门头沟区| 平利县| 麟游县| 通许县| 城步| 化州市| 乐东| 来凤县| 毕节市| 太白县| 武山县| 荔浦县| 合阳县| 五大连池市| 淳安县| 中江县| 崇明县| 阜南县| 固镇县| 松江区| 古浪县| 开封市| 万山特区|