找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering; G. Hariharan Book 2019 The Editor(s) (if applicable) and The

[復制鏈接]
樓主: Osteopenia
51#
發(fā)表于 2025-3-30 08:57:07 | 只看該作者
,Two Reliable Wavelet Methods to Fitzhugh–Nagumo (FN) and Fractional FN Equations,n this paper, we have developed the wavelet methods to find the approximate solutions for the Fitzhugh–Nagumo (FN) and fractional FN equations. The proposed method techniques provide the solutions in rapid convergence series with computable terms.
52#
發(fā)表于 2025-3-30 16:23:56 | 只看該作者
53#
發(fā)表于 2025-3-30 16:35:49 | 只看該作者
Wavelet-Based Analytical Expressions to Steady-State Biofilm Model Arising in Biochemical Engineeribyshev wavelet-based approximation method is successfully introduced in solving nonlinear steady-state biofilm reaction model. Analytical solutions for substrate concentration have been derived for all values of the parameters . and .. The power of the manageable method is confirmed. Some numerical
54#
發(fā)表于 2025-3-31 00:19:13 | 只看該作者
Book 2019r differential equations that arise when modelling real physical phenomena. It explores the analytical and numerical approximate solutions obtained by wavelet methods for both classical and fractional-order differential equations; provides comprehensive information on the conceptual basis of wavelet
55#
發(fā)表于 2025-3-31 00:55:06 | 只看該作者
56#
發(fā)表于 2025-3-31 07:47:58 | 只看該作者
,A New Coupled Wavelet-Based Method Applied to the Nonlinear Reaction–Diffusion Equation Arising in numerical example to demonstrate the validity and applicability of the method. Moreover, the use of proposed wavelet-based coupled method is found to be simple, efficient, less computation costs, and computationally attractive.
57#
發(fā)表于 2025-3-31 12:23:50 | 只看該作者
An Efficient Wavelet-Based Spectral Method to Singular Boundary Value Problems,rted into a system of algebraic equations. The convergence of the proposed method is established. The power of the manageable method is confirmed. Finally, we have given some numerical examples to demonstrate the validity and applicability of the proposed wavelet method.
58#
發(fā)表于 2025-3-31 14:30:44 | 只看該作者
59#
發(fā)表于 2025-3-31 19:50:51 | 只看該作者
Haar Wavelet Method for Solving Some Nonlinear Parabolic Equations,proposed scheme can be used to a wide class of nonlinear equations. The power of this manageable method is confirmed. Moreover, the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs, and computationally attractive.
60#
發(fā)表于 2025-4-1 01:29:32 | 只看該作者
Wavelet-Based Analytical Expressions to Steady-State Biofilm Model Arising in Biochemical Engineeriexamples are presented to demonstrate the validity and applicability of the wavelet method. Moreover, the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs, and computationally attractive.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高青县| 渑池县| 麦盖提县| 仲巴县| 米脂县| 肃宁县| 吴江市| 和林格尔县| 敦煌市| 油尖旺区| 新源县| 荔波县| 绥江县| 临颍县| 阿勒泰市| 平南县| 大丰市| 马尔康县| 鄂托克前旗| 浦县| 星座| 吉林省| 松江区| 东方市| 克东县| 白玉县| 五家渠市| 青河县| 堆龙德庆县| 阿尔山市| 永兴县| 江源县| 古交市| 正镶白旗| 永嘉县| 嘉义市| 金川县| 桃源县| 浙江省| 子洲县| 霞浦县|