找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology; Third International Seyed Mostafa Kia,Hassan Mohy-ud-Din,Ma

[復(fù)制鏈接]
樓主: miserly
31#
發(fā)表于 2025-3-26 22:04:56 | 只看該作者
32#
發(fā)表于 2025-3-27 04:08:06 | 只看該作者
33#
發(fā)表于 2025-3-27 06:48:53 | 只看該作者
Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent d inflammatory activities are examined by longitudinal image analysis to support diagnosis and treatment decision. Automated lesion segmentation methods based on deep convolutional neural networks (CNN) have been proposed, but are not yet applied in the clinical setting. Typical CNNs working on cros
34#
發(fā)表于 2025-3-27 09:26:42 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:15 | 只看該作者
A Deep Transfer Learning Framework for 3D Brain Imaging Based on Optimal Mass Transportuirements to optimize performance. In this study, we propose a deep transfer learning network based on Optimal Mass Transport (OMTNet) for 3D brain image classification using MRI scans from the UK Biobank. The major contributions of the OMTNet method include: a way to map?3D surface-based vertex-wis
36#
發(fā)表于 2025-3-27 21:35:35 | 只看該作者
37#
發(fā)表于 2025-3-28 01:29:01 | 只看該作者
Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flowsg able to generate age-specific brain morphology templates that realistically represent the typical aging trend in a healthy population. This work is a step towards unified modeling of functional relationships between 3D brain morphology and clinical variables of interest with powerful normalizing f
38#
發(fā)表于 2025-3-28 02:53:53 | 只看該作者
A Multi-task Deep Learning Framework to Localize the Eloquent Cortex in Brain Tumor Patients Using Dional deep learning approaches and can identify bilateral language areas even when trained on left-hemisphere lateralized cases. Hence, our method may ultimately be useful for preoperative mapping in tumor patients.
39#
發(fā)表于 2025-3-28 09:16:42 | 只看該作者
40#
發(fā)表于 2025-3-28 12:56:44 | 只看該作者
An Anatomically-Informed 3D CNN for Brain Aneurysm Classification with Weak Labelsbutions. To tackle this frequent scenario of inherently imbalanced, spatially skewed data sets, we propose a novel, anatomically-driven approach by using a multi-scale and multi-input 3D Convolutional Neural Network (CNN). We apply our model to 214 subjects (83 patients, 131 controls) who underwent
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海阳市| 罗山县| 石台县| 永修县| 通山县| 井冈山市| 崇州市| 墨江| 四川省| 留坝县| 卫辉市| 东山县| 旌德县| 自贡市| 维西| 洞头县| 铅山县| 赞皇县| 乌拉特后旗| 普兰店市| 桃园市| 龙川县| 偏关县| 西平县| 伊吾县| 滨州市| 棋牌| 黑河市| 榆中县| 静安区| 丰县| 清水河县| 大名县| 通化县| 许昌市| 潼南县| 凤翔县| 尉犁县| 乌拉特中旗| 大石桥市| 武穴市|