找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology; Third International Seyed Mostafa Kia,Hassan Mohy-ud-Din,Ma

[復(fù)制鏈接]
樓主: miserly
41#
發(fā)表于 2025-3-28 16:27:59 | 只看該作者
42#
發(fā)表于 2025-3-28 19:04:27 | 只看該作者
SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classificationsification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints.
43#
發(fā)表于 2025-3-29 01:01:25 | 只看該作者
44#
發(fā)表于 2025-3-29 03:29:29 | 只看該作者
Patch-Based Brain Age Estimation from?MR?Imagesrain age, leading to more anatomically driven and interpretable results, and thus confirming relevant literature which suggests that the ventricles and the hippocampus are the areas that are most informative. In addition, we leverage this knowledge in order to improve the overall performance on the
45#
發(fā)表于 2025-3-29 09:24:42 | 只看該作者
46#
發(fā)表于 2025-3-29 12:11:09 | 只看該作者
47#
發(fā)表于 2025-3-29 15:50:47 | 只看該作者
Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent rm Memory (C-LSTM) networks to incorporate the temporal dimension. To reduce scanner- and protocol dependent variations between single MRI exams, we propose a histogram normalization technique as pre-processing step. The ISBI 2015 challenge data was used for network training and cross-validation..We
48#
發(fā)表于 2025-3-29 20:31:07 | 只看該作者
Deep Voxel-Guided Morphometry (VGM): Learning Regional Brain Changes in Serial MRIolute Error and Gradient loss outperformed all other tested loss functions. Deep VGM maps showed high similarity to the original VGM maps (SSIM .). This was additionally confirmed by a neurologist analysing the MS lesions. Deep VGM resulted in a 3% lesion error rate compared to the original VGM appr
49#
發(fā)表于 2025-3-30 02:28:40 | 只看該作者
A Deep Transfer Learning Framework for 3D Brain Imaging Based on Optimal Mass Transportategy to fuse all shape metrics and generate an ensemble classification. We tested the approach in a classification task conducted on 26k participants from the UK Biobank, using body mass index (BMI) thresholds as classification labels (normal vs. obese BMI). Ensemble classification accuracies of 72
50#
發(fā)表于 2025-3-30 04:54:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘南县| 池州市| 中山市| 淳化县| 博爱县| 绥江县| 交口县| 井冈山市| 精河县| 永吉县| 通化市| 屯门区| 辽宁省| 平顺县| 丹东市| 静乐县| 库伦旗| 莱州市| 太湖县| 呼伦贝尔市| 邻水| 巩义市| 涿州市| 湄潭县| 桃源县| 金溪县| 景谷| 弥渡县| 昌图县| 潢川县| 新平| 黑龙江省| 山丹县| 松阳县| 米易县| 西和县| 舟曲县| 萨嘎县| 高碑店市| 海门市| 颍上县|