找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology; Third International Seyed Mostafa Kia,Hassan Mohy-ud-Din,Ma

[復(fù)制鏈接]
樓主: miserly
41#
發(fā)表于 2025-3-28 16:27:59 | 只看該作者
42#
發(fā)表于 2025-3-28 19:04:27 | 只看該作者
SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classificationsification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints.
43#
發(fā)表于 2025-3-29 01:01:25 | 只看該作者
44#
發(fā)表于 2025-3-29 03:29:29 | 只看該作者
Patch-Based Brain Age Estimation from?MR?Imagesrain age, leading to more anatomically driven and interpretable results, and thus confirming relevant literature which suggests that the ventricles and the hippocampus are the areas that are most informative. In addition, we leverage this knowledge in order to improve the overall performance on the
45#
發(fā)表于 2025-3-29 09:24:42 | 只看該作者
46#
發(fā)表于 2025-3-29 12:11:09 | 只看該作者
47#
發(fā)表于 2025-3-29 15:50:47 | 只看該作者
Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent rm Memory (C-LSTM) networks to incorporate the temporal dimension. To reduce scanner- and protocol dependent variations between single MRI exams, we propose a histogram normalization technique as pre-processing step. The ISBI 2015 challenge data was used for network training and cross-validation..We
48#
發(fā)表于 2025-3-29 20:31:07 | 只看該作者
Deep Voxel-Guided Morphometry (VGM): Learning Regional Brain Changes in Serial MRIolute Error and Gradient loss outperformed all other tested loss functions. Deep VGM maps showed high similarity to the original VGM maps (SSIM .). This was additionally confirmed by a neurologist analysing the MS lesions. Deep VGM resulted in a 3% lesion error rate compared to the original VGM appr
49#
發(fā)表于 2025-3-30 02:28:40 | 只看該作者
A Deep Transfer Learning Framework for 3D Brain Imaging Based on Optimal Mass Transportategy to fuse all shape metrics and generate an ensemble classification. We tested the approach in a classification task conducted on 26k participants from the UK Biobank, using body mass index (BMI) thresholds as classification labels (normal vs. obese BMI). Ensemble classification accuracies of 72
50#
發(fā)表于 2025-3-30 04:54:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沂市| 晋江市| 卓尼县| 新野县| 南岸区| 合作市| 绍兴县| 龙山县| 哈尔滨市| 北流市| 黄骅市| 油尖旺区| 黄冈市| 饶河县| 南澳县| 太白县| 河间市| 周口市| 肇庆市| 古田县| 绵阳市| 图片| 新余市| 临漳县| 武义县| 东兰县| 郧西县| 台州市| 会泽县| 勃利县| 东光县| 永平县| 邛崃市| 山东| 宜良县| 东丽区| 方城县| 汉川市| 望谟县| 和硕县| 博乐市|