找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vector Measures, Integration and Related Topics; Guillermo P. Curbera,Gerd Mockenhaupt,Werner J. Ri Conference proceedings 2010 Birkh?user

[復(fù)制鏈接]
樓主: SPIR
51#
發(fā)表于 2025-3-30 09:00:24 | 只看該作者
52#
發(fā)表于 2025-3-30 12:55:50 | 只看該作者
Equations Involving the Mean of Almost Periodic Measures,isfies equation . In this context . is an almost periodic function on ?, μ is a positive almost periodic measure on ? and υ is a bounded measure also on ?. With a suitable choice of the measures μ and υ equation (E) becomes . where . is an almost periodic function on ? and ? belongs to ..(?).
53#
發(fā)表于 2025-3-30 17:12:06 | 只看該作者
54#
發(fā)表于 2025-3-30 20:43:53 | 只看該作者
,Non-commutative Yosida-Hewitt Theorems and Singular Functionals in Symmetric Spaces of τ-measurableth a semifinite von Neumann algebra .. Our principal theorem permits the systematic study of the lienar spaces of normal and singular linear functionals on symmetrically normed .-bimodules. We present some applications and give a decomposition into normal and singular parts for weakly compact operators on such spaces.
55#
發(fā)表于 2025-3-31 03:00:38 | 只看該作者
56#
發(fā)表于 2025-3-31 07:50:21 | 只看該作者
On Operator-valued Measurable Functions,uss are mostly applications of a useful lemma (Lemma 2.1 in this paper) about measurable operator-valued functions. The lemma and its elementary proof, as well as some special versions thereof, are also discussed in this note.
57#
發(fā)表于 2025-3-31 09:58:26 | 只看該作者
Birkh?user Basel 2010
58#
發(fā)表于 2025-3-31 14:10:10 | 只看該作者
Vector Measures, Integration and Related Topics978-3-0346-0211-2Series ISSN 0255-0156 Series E-ISSN 2296-4878
59#
發(fā)表于 2025-3-31 20:32:01 | 只看該作者
60#
發(fā)表于 2025-4-1 01:01:27 | 只看該作者
On Mean Ergodic Operators,Aspects of the theory of mean ergodic operators and bases in Fréchet spaces were recently developed in [.]. This investigation is extended here to the class of barrelled locally convex spaces. Duality theory, also for operators, plays a prominent role.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞金市| 宾川县| 灵台县| 靖宇县| 古交市| 峨边| 嘉义县| 综艺| 罗城| 定安县| 八宿县| 宣威市| 无棣县| 通山县| 晋江市| 阳城县| 凤翔县| 万山特区| 陕西省| 桓台县| 兴安盟| 隆子县| 马龙县| 阳谷县| 宣恩县| 昆明市| 西乌珠穆沁旗| 拉孜县| 宁武县| 洛扎县| 南皮县| 珠海市| 黎川县| 富宁县| 九江县| 海原县| 阿荣旗| 寿光市| 揭阳市| 桑日县| 健康|