找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vector Measures, Integration and Related Topics; Guillermo P. Curbera,Gerd Mockenhaupt,Werner J. Ri Conference proceedings 2010 Birkh?user

[復(fù)制鏈接]
查看: 46991|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:05:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Vector Measures, Integration and Related Topics
編輯Guillermo P. Curbera,Gerd Mockenhaupt,Werner J. Ri
視頻videohttp://file.papertrans.cn/981/980839/980839.mp4
概述All articles were refereed.A mixture of up-to-date survey articles and new research articles.One general unifying theme.Includes supplementary material:
叢書名稱Operator Theory: Advances and Applications
圖書封面Titlebook: Vector Measures, Integration and Related Topics;  Guillermo P. Curbera,Gerd Mockenhaupt,Werner J. Ri Conference proceedings 2010 Birkh?user
出版日期Conference proceedings 2010
關(guān)鍵詞Banach space; Compact operator; Operator theory; functional analysis; harmonic analysis
版次1
doihttps://doi.org/10.1007/978-3-0346-0211-2
isbn_ebook978-3-0346-0211-2Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Vector Measures, Integration and Related Topics影響因子(影響力)




書目名稱Vector Measures, Integration and Related Topics影響因子(影響力)學(xué)科排名




書目名稱Vector Measures, Integration and Related Topics網(wǎng)絡(luò)公開度




書目名稱Vector Measures, Integration and Related Topics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Vector Measures, Integration and Related Topics被引頻次




書目名稱Vector Measures, Integration and Related Topics被引頻次學(xué)科排名




書目名稱Vector Measures, Integration and Related Topics年度引用




書目名稱Vector Measures, Integration and Related Topics年度引用學(xué)科排名




書目名稱Vector Measures, Integration and Related Topics讀者反饋




書目名稱Vector Measures, Integration and Related Topics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:20:51 | 只看該作者
Fourier Series in Banach spaces and Maximal Regularity,em and give applications to differential equations. In particular, we characterize maximal regularity (in a slightly different version than the usual one) by .-sectoriality. Applications to non-autonomous problems are indicated.
板凳
發(fā)表于 2025-3-22 03:30:18 | 只看該作者
On Vector Measures, Uniform Integrability and Orlicz Spaces,..(μ). We also provide a characterization of the Pettis integral of Dunford integrable functions by mean of weak compactness in separable Orlicz spaces and give a necessary and sufficient condition for the uniform integrability of {.∈..}, whenever .:Ω→.* is Gel’fand integrable.
地板
發(fā)表于 2025-3-22 06:40:00 | 只看該作者
Spaces of Operator-valued Functions Measurable with Respect to the Strong Operator Topology,e show that functions in ../μ; ?(.)] define operator-valued measures with bounded .-variation and use these spaces to obtain an isometric characterization of the space of all ?(.)-valued multipliers acting boundedly from ..(μ; .) into ..(μ; .), 1≤.<.<∞.
5#
發(fā)表于 2025-3-22 10:44:53 | 只看該作者
A Decomposition of Henstock-Kurzweil-Pettis Integrable Multifunctions, same result can be achieved in case of an arbitrary Banach space. Applying the representation theorem we describe the multipliers of the Henstock-Kurzweil-Pettis integrable multifunctions. Then we use this description to obtain a characterization of the Henstock-Kurzweil-Pettis integrability in terms of subadditive operators.
6#
發(fā)表于 2025-3-22 15:35:49 | 只看該作者
Fourier Series in Banach spaces and Maximal Regularity,..(0, 2π; .) converges unconditionally if and only if .=2 and . is a Hilbert space. For operator-valued multipliers we present the Marcinkiewicz theorem and give applications to differential equations. In particular, we characterize maximal regularity (in a slightly different version than the usual
7#
發(fā)表于 2025-3-22 17:52:24 | 只看該作者
8#
發(fā)表于 2025-3-22 23:37:26 | 只看該作者
9#
發(fā)表于 2025-3-23 04:31:18 | 只看該作者
10#
發(fā)表于 2025-3-23 07:35:20 | 只看該作者
How Summable are Rademacher Series?, the extension of this result to the setting of rearrangement invariant spaces. The space .. of functions having square exponential integrability plays a prominent role in this problem..Another way of gauging the summability of Rademacher series is considering the . of the Rademacher series in a rea
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼图壁县| 龙山县| 股票| 澄迈县| 兴隆县| 钟山县| 萍乡市| 和平县| 鄂州市| 启东市| 吴忠市| 德昌县| 合川市| 磴口县| 普兰店市| 神木县| 宜城市| 繁峙县| 双流县| 芮城县| 京山县| 若羌县| 永泰县| 都兰县| 南康市| 峨眉山市| 东至县| 纳雍县| 通化市| 怀集县| 巍山| 舒城县| 沁阳市| 六盘水市| 明溪县| 宁乡县| 永德县| 大港区| 东宁县| 镇平县| 张家界市|